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Figure 1: Immersive VR scene authoring with EchoLadder: EchoLadder makes the process of Al scene modification transparent
by displaying interactable suggestion modules. Users can better control the AI modification process and modify the scene

progressively.
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Abstract

Mixed reality platforms allow users to create virtual environments,
yet novice users struggle with both ideation and execution in spa-
tial design. While existing Al models can automatically generate
scenes based on user prompts, the lack of interactive control limits
users’ ability to iteratively steer the output. In this paper, we present
EchoLadder, a novel human-AlI collaboration pipeline that leverages
large vision-language model (LVLM) to support interactive scene
modification in virtual reality. EchoLadder accepts users’ verbal
instructions at varied levels of abstraction and spatial specificity,
generates concrete design suggestions throughout a progressive
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design process. The suggestions can be automatically applied, re-
generated and retracted by users’ toggle control. Our ablation study
showed effectiveness of our pipeline components. Our user study
found that, compared to baseline without showing suggestions,
EchoLadder better supports user creativity in spatial design. It also
contributes insights on users’ progressive design strategies under
Al assistance, providing design implications for future systems.
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1 Introduction

Recent advancements in generative 3D scenes, such as text-to-
3D generation [11, 21, 26] and LLM-based scene design [12, 32],
have introduced novel opportunities for Al-assisted VR authoring
tools. By combining LLM understanding ability with VR authoring
tools, these technologies enable users to craft intended immersive
scenes more effectively. However, these automatic full-generation
approaches predominantly follow a “black-box” generation model,
limiting users to repeatedly re-generating or manually revising it
post-hoc.

Some recent works have integrated interactive methods to sup-
port users in iteratively building scenes. For instance, VRcopilot [32]
assists users in authoring VR layouts by allowing them to draw out
areas or place wireframes to guide furniture generation, thereby
supporting a scaffolded process. LLMR [6] allows users to use natu-
ral language to modify objects in mixed reality scenes by integrating
object parameters in the generation pipeline. Such solutions could
fundamentally improve the support for iterative content creation.
However, while much work is focused on improving Al pipelines
for automatic modification, one important question remains: how
to support user intervention in that process via effective interface
solutions?

To fill this gap, we explore a design concept inspired by the effec-
tiveness of “chain of thought” [23], which is an established approach
for improving the quality of Al generation. Previous works on Al-
assisted writing identified benefits of exposing the thought process
of generation to users. How would this translate to immersive spa-
tial design? This research introduces a novel interface solution to
support user intervention in Al-automated scene modification, to
improve user agency and foster human-AI co-creation.

In this paper, we introduce a novel system named EchoLadder,
based on a Large Vision-Language Model (LVLM), GPT-4o, to en-
able progressive and interactive scene construction in VR. Different
from prior technical solutions [6, 32] executing users’ concrete
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commands, EchoLadder interprets users’ abstract instructions, com-
bines scene images and object parameters to generate concrete
modification suggestions. The suggestions are displayed as mod-
ular interactive widgets for users to selectively apply, undo, or
regenerate. Once applied, the system executes a suggestion by mod-
ifying the scene. Users could view the direct visual effect and toggle
to keep or retract the changes. This approach aims to provide both
textual explanation and visual preview of each Al-generated step,
while allowing selective and non-linear execution of them.

We evaluated EchoLadder through two studies. An ablation study
assessed the impact of removing each input component of the
pipeline—visual input, object parameters, and Al suggestions—on the
quality of generation results. The finding showed that the full input
configuration used by EchoLadder achieved the best performance.
A second user study compared EchoLadder with a baseline, which
leverages the same pipeline for automatic scene modification but
does not display intermediate suggestions to users. Our findings
revealed our suggestion-based interface solution could better sup-
port user creativity and control, while leading to some distinct
differences in design strategies.

Our contributions are threefold:

o A novel interface solution supporting user intervention in
iterative Al-automated authoring of VR scenes. It interprets
users’ natural language requests at any abstraction level
and generates interactive suggestions for them to selectively
apply.

e An LVLM model-based Al pipeline integrating real-time
scene understanding and semantic object retrieval to gen-
erate 3D scene modifications responding to users’ natural
language requests. The effectiveness of each pipeline com-
ponent is validated by an ablation study.

o Empirical findings from a comparative user study evaluating
EchoLadder against an Al-modification baseline, demonstrat-
ing the effectiveness of our suggestion-based design, and
providing insights into how participants used the system.

2 Related Work

2.1 Al-assisted scene generation

There has been existing research on Al-assisted interior design,
both in 2D and 3D. Large models contribute a lot to 2D interior
design. For example, an Interactive Interior Design Recommen-
dation System [28] based on reinforcement learning. The interac-
tion with the user taps into the potential preferences of the home-
owner and selects the appropriate initial design. Virtual Interior
DESign system [14], leveraging cutting-edge technology in gen-
erative Al to assist users in generating and editing indoor scene
concepts quickly, given user text description and visual guidance.
C2Ideas [12], through large models to better automate the genera-
tion of interior color design schemes that are more consistent with
users’ ideas.

Before the bloom of LLMs, traditional Al has been well used for
3D scenes synthesis. For example, the traditional method of using
CLIPGraphs [2] can better estimate the position of objects in an
indoor scene from a benchmark set of object categories. CompoN-
eRF [3], which interprets complex text into editable 3D layouts
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and supports innovative multi-object composition. And a frame-
work [33] for quickly synthesizing indoor scenes, measuring more
reasonable relationships between objects through CSR, and generat-
ing various performations simultaneously in seconds. A system [7]
for adaptive synthesis of indoor scenes given an empty room and
only a few object categories. It exploit a database of 2D floor plans
to extract object relations and uses the similar plan references to
create the layout of synthesized scenes.

Benefiting from LLMs’ strong ability in understanding and rea-
soning, some recent work on LLM-assisted 3D scene creation im-
proves Al-assisted generation, making it more aligned with users’
intentions. For example, Hong et al. proposed 3D-LLMs [11] that
take 3D point clouds and their features as input and perform a
diverse set of 3D-related tasks. Additionally, Sun et al. developed
3D-GPT [21], which integrates three core agents (the task dispatch
agent, the conceptualization agent, and the modeling agent) to
conduct an instruction-draven 3D modeling and positions LLM as
problem solvers. Moreover, Yang et al. developed a fully automatic
system, HOLODECK [26], that can generate diverse 3D scenes with
user customized styles.

While bringing benefits, however, these previous works mainly
employ end-to-end generation approaches that automativally gen-
erate entire scene in one go, instead of allow users to intervene the
generation process. Inspired by this, our work bridges the gap by
allowing users to interactively iterate and modify the generated
scenes, with the system creating suggestions and modifications
based on the real-time status of the scenes.

2.2 Immersive creativity support

With the development of VR technology, the demand for creation
of virtual scenes has become more and more abundant. A lot of pre-
vious work has focused on the immersive creativity support for VR
scenes. The traditional Visual Worlds in Miniature metaphor [20]
provides a user interface technique for creating 3D scenes from
different perspectives. Recently, there has also been a lot of work
focused on improving the creative experience of VR immersion,
Including creating more novel ways of interacting with VR/AR [16,
31, 34], as well as exploring the topic of collaborative immersive
creation [8, 15]. For example, VRGit [29], a new collaborative VCS
that visualizes version history as a directed graph composed of 3D
miniatures, and enables users to easily navigate versions, create
branches, as well as preview and reuse versions directly in VR.
FlowMatic [31], an immersive authoring tool that raises the ceiling
of expressiveness by allowing programmers to specify reactive be-
havior. Different from existing creative support in VR scenes, we
leverage Vision-LLMs to support the creativity and manipulation
of content creation.

2.3 Al-supported progressive scene crafting

The progressiveness of Al-supported content creation lies in its iter-
ative refinement process, where users retain authority and guide
the AI's execution. This progressive approach has demonstrated
significant benefits across multiple HCI studies, such as writing
stories with Al suggesting plot, style, and tone to facilitate rapid
creative iteration [5, 27]. While the concept of progressiveness in Al
generation of 3D space has not been widely explored, recent works

UIST ’25, September 28—-October 01, 2025, Busan, Republic of Korea

have made significant contributions by bridging LLMs and 3D con-
tent creation. For example, researchers have proposed pipelines to
enhance LLMs’ understanding of user design intent and generate
style-aligned scenes, as seen in HOLODECK [26]. 3D-GPT [21] sup-
ports iterative natural language commands to generate and author
a 3D scene, eg. changing the color of generated flowers. Meanwhile,
HCI research has focused on interactivity between users and LLMs
to improve controllability. For instance, Zhang et al. introduced VR-
Copilot [32], an LLM-assisted authoring system that improves 3D
layout generation by allowing users to scaffold or guide the LLM’s
output via wireframing. Additionally, Torre et al. [6] presented the
Large Language Model for Mixed Reality (LLMR), which supports
scene understanding, task planning, self-debugging, and memory
management, enabling users to create scene content iteratively by
modifying object parameters. The novelty of EchoLadder lies in its
focus on supporting user intervention in automated scene modifi-
cation while interpreting abstract user requests. Our Al pipeline
integrates real-time full-scene understanding (vision + object-level
parameters) and semantic-matching object retrieval to enable au-
tomatically adding objects to reasonable positions. While existing
works directly execute one authoring process following user com-
mands, EchoLadder uniquely introduces interactive suggestions
as intermediate explanation, visualization and control support to
bridge automated execution and manual adjustment for each au-
thoring operation.

3 EchoLadder

In this section, we present the system design of EchoLadder. EchoLad-
der is a novel Al-assisted VR scene design system that interprets
user intent, generates context-aware design suggestions, and facili-
tates controllable, iterative construction in immersive environments.
In EchoLadder, Labeling Module leverages LVLM to automatically
annotate 3D assets with accurate object-matching information, en-
abling faster and more precise object retrieval while eliminating
the need for manual selection or browsing by the user. Generative
Module module understands natural language instructions, based
on the current scene context (visual input and object parameters)
to generate relevant suggestions for scene modification. It auto-
matically handles object selection and editing, allowing users to
freely express their ideas in language while the system performs
spatial reasoning and executes the corresponding logic. Addition-
ally, rather than executing user instructions directly, the system
generates one or more suggestions for each instruction. Users can
preview, apply, undo, or regenerate each suggestion individually,
combining manual adjustments to iteratively construct the envi-
ronment and refine their design decisions.

We position EchoLadder within the domian of interior design, a
representative and well-established application area for immersive
authoring tools [30, 32], such as Home Design 3D VR! and IKEA
Virtual Interior Designer?. However, EchoLadder is not limited to
this domain and can be generalized to other spatial design tasks.
The prototyping system developed in this paper contains 2156 3D
models for interior design from the Unity Asset Store includes a

!https://en.homedesign3d.net/vr
Zhttps://present.digital/ikea/
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(a) (c)

Figure 2: Voice input for user requests: (a) Initial state allows a
user to input instruction after pressing the Mic button. (b) Mic
button changes to Stop when accepting voice input. (c) Click
Mic again to stop recording and check the transcribed user
request. Clicking the AI Assistant button will start generating
suggestions.

wide range of furniture, decorations and textures. The scene modi-
fication operations supported by our system are derived from prior
literature [29, 32] and existing VR application [1]. These operations
encompass common object-level tasks in interior design, includ-
ing: adding 3D objects (Add), modifying object positions (Move),
rotating (Rotate), scaling (Scale), changing colors (Color), adjusting
materials or styles (Material), and removing objects (Destroy).

3.1 Interaction Design

In this section, we describe interactions of EchoLadder.

3.1.1 Instruction Input. Considering the absence of physical
keyboards in VR and the inefficiency of virtual typing [13, 18], we
adopt intuitive voice [19] for user instruction input. As shown in
Figure 2, once the interaction interface is activated, users initiate
voice recording by selecting the microphone icon using either the
controller button or raycasting. The icon turns red to indicate active
listening. After issuing a instruction, users select the icon again to
stop recording, upon which the system transcribes the voice input
into text and displays it on the interface. Based on the transcription
accuracy, users can either proceed with the next operation or re-
record the instruction.

3.1.2 User Interaction with Suggestions. Our system uniquely
introduces the display of interactive suggestions in order to show
AT’s reasoning process and selectively intervene in automated scene
modification. Once the user confirms the instruction, they can se-
lect “Al Assistan” button on the interface. The Generative Module
then parses the user instruction, object parameters and visual in-
formation to generate suggestions, which are individually listed on
the interface (Figure 3). Once suggestions are generated, the user is
offered three interaction options.

Browsing Suggestions. We provide two ways to help users
browse suggestions, text reading and voice reading. Users can ei-
ther read the textual content displayed in the interface or have
the system read a suggestion aloud by clicking the joystick after
scrolling down the list (by moving the joystick) to locate it.

Apply and Undo Suggestion. Users can decide whether to ap-
ply a suggestion to preview its effect within the scene. Since the
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Figure 3: Al-generated suggestions and their status in the
interface. (a) Aystem displays the generated suggestions af-
ter interpreting the user request. (b) Three statuses of the
suggestions: White (Generation of spatial modification in
progress), Blue (Generation completed, pending application),
Green (Applied).

system requires time to translate suggestions into executable ac-
tions, we use colored borders to indicate the current processing
status. As shown in Figure 3(b), a white border (Processing) indi-
cates that the Al is generating the corresponding actions in the
background. During this phase, users can browse the suggestions
but cannot apply them. Once the system completes the analysis and
successfully generates the actions, the suggestion border turns blue
(Pending Application), indicating that it is ready to be applied to the
scene. After the user confirms the application and the actions are
successfully executed in the VR environment, the suggestion border
turns green (Applied). The user could view the post-modification
effect in the VR environment. In addition, our system supports
undoing applied suggestions. When users click on a previously
applied suggestion, the system rolls back all modifications associ-
ated with that specific suggestion without affecting others. This
immediate restoration of the VR scene enhances user control and
flexibility.

Regenerate Suggestion. If users are not satisfied with the out-
come of a generated suggestion, our system provides a suggestion
regeneration function (via the “Regenerate” button next to each
suggestion). This allows users to modify the result of a single sugges-
tion without re-entering the original instruction. Upon triggering
regeneration, the suggestion border turns white, and the Generative
Module regenerates the corresponding actions based on the current
scene context.

3.1.3 Immersive Manual Authoring Interactions. The system
provides manual operations to support users to customize the de-
sign more freely. The manual operations include object modification
and object addition:

Object Modification. The system provides the following man-
ual operations for modifying virtual objects:
o Select objects using the ray on the right-hand controller of
VR device.
e Manipulate objects by moving them along the handle ray,
rotating them, or adjusting their size.
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e Modify object properties, including color and material, or
delete objects via the interface.

Manual Objects Addition. The manual object addition menu
enables users to browse and select object categories for searching
3D models. Selecting a category displays a list of available objects
under that classification. Users can then add an object by clicking
on its corresponding preview image. It is important to note that
the objects available for manual addition differ from those that
can be automatically generated by the Al pipeline. This distinction
ensures that users retain control over manual customization while
leveraging Al-driven automation where necessary.

3.2 Technical Architecture

In this section, we introduce the architecture of EchoLadder in the
immersive authoring system. There are two main modules: Labeling
Module and Generative Module.

3.2.1 Labeling Module. For the system to automatically add
objects that match user’s requests based on a mixture of considera-
tions such as function and style, we designed a Labeling Module to
perform multi-dimensional, high-levelsemantic labeling for our 3D
models. To the best of our knowledge, there were no publicly avail-
able datasets that meet our needs at the time we built the system.
To be specific, the Labeling Module has two main parts:

Automatic Annotation of 3D Asset. Using LVLMs for image
annotation has proven to be an effective approach [24, 25]. This part
includes four steps. First, thumbnails of all 3D models in system
asset repository are extracted as the dataset for labeling. Second,
the LVLM (GPT-4o0) is used to iteratively generate open-vocabulary
labels for each 3D model. These annotations include the model
name, category, and a description summary (e.g., functions, colors),
all inferred from the visual content of the thumbnails. Third, the
generated annotations are structured in JSON format and stored
as text files. The prompts and example of JSON file are available in
Appendix A.1. Finally, we manually reviewed the labeled content,
with a particular focus on verifying the model description.

Asset Matching. As shown in Figure 4, when Generative Mod-
ule outputs an action such as “add a comfortable sofa in a neutral
color’, it generates a corresponding description based on the user’s
intent and the specified action. It then passes the object name and
description (e.g., “sofa”) to Labeling Module. The Labeling Module
first identifies the appropriate object category using pre-assigned
labels, and then employs a natural language processing algorithm
(Sentence-BERT, or S-BERT) to retrieve the most relevant asset
from the 3D model library—such as a light gray fabric sofa—that
best matches the generated description.

3.22 Generative Module. In this system, the Generative Module
is responsible for interpreting user instructions, visual input and
object parameters, subsequently generating scene modification sug-
gestions along with specific execution actions. The entire process
can be decomposed into the following four key steps:

User Intent Recognition and Scene Comprehension. The Gen-
erative Module first parses the input provided by the user (Appen-
dix A.2). As shown in Figure 4, the input consists of three primary
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components: user intent (Instruction), visual information (Top view
image of scene), and object parameters (Parameters for each at-
tribute of scene objects) which includes objects’ position, rotation,
scale, color, and material (Style). After receiving these input, the
Generative Module analyzes the current scene by combining the
visual and object parameters to identify objects, their attributes, and
spatial relationships. Finally, through multimodal reasoning, the
system determines whether the user’s instruction aligns with the
existing scene and generates actionable suggestions accordingly.

Generate Reasonable Scene Modification Suggestions. The
Generative Module formulates suggestions based on the previously
analyzed information. As shown in Figure 4 (Suggestions Genera-
tion), the module infers the most reasonable modifications by con-
sidering both the user’s instruction and the current scene context—
such as adjusting the position, size, color of objects, or adding
new elements to the scene. These suggestions are structured in
JSON format (Appendix A.2) for downstream processing. The JSON-
formatted suggestions are then parsed and converted to interactive
buttons within the user interface. Finally, all suggested modifica-
tions are visually rendered, allowing users to browse and review
them before making a decision.

Translating Suggestions into Executable Actions. At this
stage, the Generative Module proceeds to the Action Generation
phase (Figure 4, Action Generation), where it transforms the gener-
ated suggestions into actions that can be directly applied to the VR
scene. The system leverages LVLM to understand the scene, then
parse each suggestion into action lists in JSON format (more details
in Appendix A.2). Each action represents an executable command
generated by the Generative Module for a given suggestion, enabling
automated scene modification. First, the module iterates through
each suggestion, using the visual information, object parameters
and suggestions as input, generates a set of concrete actions. These
actions include Move, Scale, Rotate, Color, Style, Delete, and Add
operations. For example, a suggestion like “add a neutral-colored
sofa” could be translated into actions such as Add [sofa] and Move
[sofa] to (x,y, z). By interpreting both the object parameters and
visual information, the system tries to place objects at appropriate
positions in reasonable sizes. For actions involving the addition of
new objects, the Labeling Module is invoked to retrieve a suitable
object from the 3D model library and return it to the Generative
Module. Finally, all generated actions are scructured in JSON format
and associated with their corresponding suggestion. When the user
applies a suggestion, all linked actions are executed in sequence
with in the VR scene.

3.3 Implementation

The prototype system presented in this paper was developed using
Unity (version 2021.3.8f1c1) and integrated with SteamVR 2.8.0, en-
abling compatibility with both Meta Quest and HTC Vive headsets.
The application featured advanced speech recognition and response
capabilities through the integration of Whisper (Audio Model) and
GPT-40 (Large Vision-Language Model, LVLM), allowing for nat-
ural and efficient user interaction. The system was deployed on
a Windows 11 desktop equipped with an Intel Core i7-13650HX
CPU, 32 GB of RAM, and a NVIDIA GeForce RTX 4060 GPU, which
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scene.

provided robust performance for real-time VR scene generation
and interaction. To facilitates information transfer and processing
for LVLM, we integrated OpenAI’s GPT-40 API. Additionally, a
socket-based Python server was established to execute the S-BERT
(Sentence-BERT) algorithm, enabling efficient object search and
matching during the Add operation. In user interactions, users
can select objects, manipulate objects, and make UI selections for
menus with the ray on right-hand joy stick. Users can open and
close menus, select suggestions, and interact with suggestions with
the buttons on the left-hand joystick.

4 Study 1 - Pipeline Evaluation

We conducted an ablation study to evaluate the impact of different
input components in EchoLadder. Considering that the users’ verbal
instructions for spatial design can vary at abstraction levels and
design goals, we designed two additional independent variables in
this study. The study has two primary objectives:

o Evaluate the generation quality of our pipeline components
by comparing scene modification quality across four input
configurations.

e Examine how our pipeline performs for instructions with
different abstraction levels.

4.1 Study Design

To evaluate the effectiveness of the pipeline input information
proposed in this paper, we designed this ablation experiment. First,
we tested the difference between the final scene results generated

by four components conditions containing different information.
The four components conditions are:

e Vision + object parameters + Suggestions (V + OP + S): In-
cludes scene image information (Vision), scene object pa-
rameter information (object parameters) and Al-generated
suggestions (Suggestions).

e Vision + Suggestions (V + S): Includes scene image informa-
tion and Al-generated suggestions.

e Vision + Object parameters (V + OP): Includes scene image
information and scene object parameter information.

e Object parameters + Suggestions(OP + S): Includes scene
object parameter information and Al-generated suggestions.

Then, in order to evaluate the impact of modifying scenarios with
instructions, we first design our instruction list. Based on the three
interior design requirement dimensions: functional requirements,
aesthetic style, and psychological stimulus and meaning [4] and
three different levels of natural language abstraction (Low, Medium,
High) [17, 22], we designed 9 instructions (3 dimensions x 3 ab-
straction levels = 9 instructions) as shown in Table 1 and used each
instruction to generate with the same initial scenario under four
components conditions (36 results, 3 dimensions x 3 abstraction
levels x 4 components conditions). Instructions differed between
abstraction levels. We counteracted the effects of abstraction level
and components conditions. The instructions were carefully crafted
to differ across abstraction levels, allowing us to isolate and coun-
terbalance the effects of both abstraction level and components
condition on the final scene outcomes.
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Design goal Low Abstraction

Medium Abstraction

High Abstraction

“Add a large screen TV on the
wall opposite the couch.”

Functional Requirements

“Set up a home theater area for movie
nights.”

“Design a space that brings the cinema
experience home.”

Aesthetic Style “Change the sofa color to navy

blue”

“Apply a nautical theme to the living
room.”

“Evoke the tranquility of the ocean in
the living space.”

“Place a small plant on the coffee
table.”

Psychological Stimula-
tion

“Introduce elements of nature to en-
hance relaxation.”

“Creating a spatial atmosphere that
harmonizes with nature to promote
balance and relaxation.”

Table 1: Natural language instructions tested in Study 1, categorized by design goals and levels of abstraction.

Measures Questions

Relevance How relevant is the scenario generation/modification to the instruction? (Q1)
Preference How much do you prefer the generation/modification outcome in this condition? (Q2)
Reasonableness How reasonable is the scenario generation/modification? (Q3)

Inspiration How inspiring do you find this generation/modification outcome? (Q4)

Open-ended question | Why do you like and dislike the outcome of each condition? (Q5)

Table 2: Questions for Study1 questionnaire.

4.1.1 Task and Procedure. The evaluation procedure was de-
signed to enable systematic comparison of scene generation quality
across different input conditions. We presented participants with
36 generated scenarios (9 instructions x 4 input configurations)
through a standardized slide deck. Each slide displayed an initial
scene alongside its modified version generated through one input
configuration, with both scenes shown from two distinct viewpoints
to provide comprehensive visual context.

To minimize order effects, we employed a Latin square design
to counterbalance both abstraction levels and instructions within
each level (3 abstraction levels x 3 instructions = 9 sequences).
we implemented full randomization of both instruction sequences
and input component condition presentations for each participant.
Before beginning the evaluation, participants were asked to review
the evaluation guidelines and confirm their understanding of the
scoring criteria with the experimenter.

During the study, participants proceeded through the slide deck
in their randomized order. For each instruction set, they viewed
all four component condition variants (labeled A-D) before provid-
ing ratings on a questionnaire. This grouped evaluation approach
helped participants make relative judgments across conditions
while maintaining the context of each design instruction. After
assessing all visual materials for a given instruction, participants
recorded their 5-point Likert scale ratings for each dimension and
provided qualitative feedback through open-ended responses. The
complete procedure required approximately 60 minutes per partici-
pant.

4.1.2 Data Collection. Participants evaluated generated scenes
through a structured questionnaire (see Table 2) adapted from a
recent work [12]. The questionnaire assessed four key dimensions

below. Each dimension used a 5-point Likert scale (1 = “Strongly
disagre” to 5 = “Strongly agree”).

e Relevance measured how well the generated scenes matched
the instruction intent. Participants evaluated whether ele-
ments like object selection and spatial arrangements properly
reflected requests.

e Preference captured subjective satisfaction with the gener-
ated outcome in each scene.

e Reasonableness assessed physical plausibility, including
proper object scaling, absence of collisions, and realistic
material properties.

e Inspiration evaluated the novelty and creative potential
of each output, determining whether results sparked new
design ideas.

Open-ended responses were recorded via audio and later tran-
scribed into text as participants’ feedback.

4.1.3 Participants. We recruited 18 participants (5 female, 13
male) aged 20 to 30 years (mean = 25.5, SD = 1.98), recruited through
university mailing lists. The participants have diverse academic
backgrounds including Engineering, Design/Art, Biology, Chem-
istry and English. Ten participants reported prior experience with
immersive space design applications.

4.2 Results

We collected a total of 2754 answers (9 instructions x 4 components
conditions x 4 categories questions x 18 participants + 9 instruc-
tions x 1 open-ended question x 18 participants). Based on these
results, we analyzed the data for different components conditions
and abstraction levels.
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Figure 5: Results of Ablation Study comparing Input Con-
figurations. The error bar represents the standard deviation.
Statistical significant effects are marked (+ = p < 0.05, ** = p <
0.01, = % * = p < 0.001).

4.2.1 Evaluation of Pipeline Components. After confirming
non-normal distribution, we employed the non-parametric Fried-
man test (Table 3) to detect significant effects in the evaluation
results. For pairwise comparisons, we used the Wilcoxon signed
rank test. We find that the component condition of EchoLadder
(V 4+ OP +S) shows the best performance in different categories. As
shown in Figure 5, statistically significant comparisons are marked
with stars. The evaluations of Input Configuration are as follow:

Full Pipeline: Vision + Scenelnfo + Suggestions(V + OP + S).
Our full pipeline outperformed the other three ablated conditions
across all the evaluation categories. As shown in Table 4 and Fig-
ure 5, this full input configuration achieved significantly higher
scores in relevance, preference, reasonableness, and inspiration
than all the other configurations. These results demonstrate that
each of the three input components plays an essential role in the
system’s performance.

From open-ended questions in the questionnaires, we found this
input configuration improved the ability of EchoLadder to generate
thematically appropriate content with high relevance, such as beach
and beach volleyball (Figure 7 (2)) and executing instructions with
minimal deviation (Figure 7 (1)). It maintained spatial accuracy,
with correctly placed and oriented furniture, and achieved stylistic
consistency, rendering elements like nautical wallpapers and ocean-
themed decorations that aligned with user-specified atmospheres
(Figures 7 (2-3)). Finally, EchoLadder exhibited strong inspirational
potential, introducing unexpected yet fitting elements—such as sand
or a well—that enriched the scene and exceeded user expectations
without sacrificing contextual fidelity (Figure 7 (2)).

Removing Object Parameters (V +S). This input configuration
performed significantly worse than all the other conditions across
all evaluation categories. This condition lacks object parameters,
which likely undermines the ability of Al to interpret spatial context
and generate coherent or appropriate modifications. Without access
to parameters such as position and scale, Al struggles to produce
relevant, well-aligned, or inspiring outcomes, despite having visual
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Figure 6: Results of comparing abstraction levels (only in V +
OP +S - full pipeline condition). The error bar represents the
standard deviation. Statistical significant effects are marked
(* =p <0.05, x = p <0.01, * * * = p < 0.001).

input and suggestions. The system struggled to identify relevant
objects, resulting in poor thematic alignment. As shown in Figure 7
(5)-(6), objects in the scene are not coherent to the ocean theme.
Layout errors are more severe, such as furniture overlap in Figure 7
(5)—(6) and illogical spatial arrangements.

Removing Vision (OP + S) and removing suggestions (V +
OP). These two conditions had mediocre performances compared
with other conditions. While OP + S yielded slightly higher mean
scores than V + OP in all evaluation categories, the differences
were not statistically significant. From the open-ended questions,
we found that without vision (OP + S), it impaired the LVLM’s
spatial reasoning and color coordination. This was reflected in
severe layout issues, including overlapping objects and irrational
layouts such as the sofa overlaps with bookshelves in Figure 7 (11).
Color perception suffered similarly, for ocean-themed modifications,
results were reported as “not blue enough” in Figure 7 (7). On the
other hand, the absence of suggestions (V + OP) constrained the
LLM’s creative capacity, producing minimal modifications, such as
Figure 7 (8). It also frequently introduced contextually inappropriate
objects like a drum kit in a ocean themed room in Figure 7 (9).

4.2.2 Effects of Abstraction Levels. We analyzed the effects of
Abstraction Level on the generated results using only the data in
the full pipeline condition (V + OP + S) (EchoLadder) across levels
of abstraction. Same as section 4.2.1, we confirmed non-normal
distribution of data, employed Friedman test to detect significant
effects. For pairwise comparisons the Wilcoxon signed-rank test
was used. While details of the statistical analysis results are in the
Appendix A.3, we highlight the main findings here.

Overall we can see in Figure 6, the system performed better
for instructions at low and high abstraction level than at medium
abstraction for Relevance, Preference and Reasonableness, but not
for Inspiration. Instructions at a higher abstraction level seem to
generate more inspiring outcome.

Low Abstraction. We can see that low abstraction instructions
shows high relevance score and reasonableness score which are



EchoLadder: Progressive Al-Assisted Design of Immersive VR Scenes

Place a small plant on the
coffee table

Initial

Scene

1

V+OP+S

4
V+S

7
V+OP

10
OP+S

Apply a nautical theme
to the living room

UIST 25, September 28-October 01, 2025, Busan, Republic of Korea

Evoke the tranquility of the
ocean in the living space

Figure 7: Results of scene modification under four pipeline input configuration conditions. The first row is the starting VR scene
for all conditions, each subsequent row is for one condition. The columns from left to write show examples of instructions in

low, medium to high abstraction level.

significantly higher than medium abstraction instructions. This
might be caused by their explicit nature, yielding precise execu-
tions that from open-ended questions answers called “precise” and
“directional”. However, this specificity came at a cost: while func-
tionally reliable, this condition scored poorly in Inspiration which is
significantly lower than other abstraction levels, as the predictable

outcomes of low abstraction instructions don’t need additional
operations, which offers little novelty.

Medium Abstraction. Our pipeline performed worse for medium
abstraction instructions across metrics. For Relevance & Reasonable-
ness, significantly lower than low abstraction and high abstraction
(Figure 6). Medium abstraction instructions occupied an awkward
middle ground — clearer than high abstraction but vaguer than
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low abstraction. In this condition, we find answers of open-ended
question were more sensitive to imperfections, such as one extra
object will make the answer negative. This probably impacted Pref-
erence, where this condition was least favored due to perceived lack
of creativity and inconsistent execution (Figure 7 (2), the sand is a
little strange). Its Inspiration score suffered similarly, with outputs
deemed neither reliably accurate nor meaningfully novel, failing to
deliver on the strengths of either extreme.

High Abstraction. Our pipeline performed strongly across all
metrics for high abstraction instructions. For Relevance & Reason-
ableness, the score of high abstraction is significantly higher than
medium abstraction instructions in all categories and higher than
low abstraction instructions in Inspiration. From the answers of
open-ended questions, they valued the balance between thematic
coherence and interpretive freedom, accepting minor inconsisten-
cies when the overall atmosphere aligned with their vision (e.g.,
“extra content but the overall atmosphere was good”). In terms of
Preference, this level was favored for enabling creative diversity,
with even imperfect layouts often perceived as intentionally artis-
tic. This condition outperformed both other abstraction levels in
Inspiration, generating outputs described as “exciting” and “fresh”,
as the LLM’s broad interpretations often surprised and delighted
users.

5 Study 2 - User evaluation

The goal of this study is to evaluate the effectiveness of display-
ing Al-generated interactive suggestions following users’ natural
language instructions. We created a baseline condition to compare
with EchoLadder for this purpose. The baseline is an automated VR
scene modification approach based on the same backend pipeline of
EchoLadder. It does not provide interactive suggestions, but directly
modifies the scene following users’ verbal instruction. To keep the
final generation quality consistent across conditions, we kept the
“suggestions generation” module in the baseline backend although
suggestions are not displayed users.

The study aimed to address two core research questions:

RQ1. How does EchoLadder compare with the baseline in terms
of user satisfaction, workload and experience?

RQ2. What creative strategies and workflows do participants
adopt when using EchoLadder and the baseline, respectively?

5.1 Design

We designed a within-subjects experiment to compare EchoLadder
and the baseline.

5.1.1 Participants. We recruited 12 participants (6 female, 6 male)
aged 23-29 (M=25.7, SD=1.65) through university mailing lists and
local VR interest groups. Screening ensured all participants had lim-
ited professional 3D design experience (<1 year) but were familiar
with VR interfaces (10/12 reported regular HMD use). This profile
represented our target user base of non-expert designers who might
benefit from Al assistance. Participants received $20 compensation
for the approximately 2-hour session, including training, tasks, and
interviews.
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5.1.2 Aparatus. The experiment used Unity 3D on Meta Quest 2
headsets, with researchers observing via a tethered laptop connec-
tion. Sessions were video recorded with participant consent.

5.1.3 Task. The same as Study 1, we developed three task types
that reflected key design goal dimensions: functional, aesthetic and
psychological stimulation. The study followed a structured protocol
to ensure consistent data collection:

¢ Functional Requirements: Designing a living room/bed-
room/study room with a XXX functional requirement.

o Aesthetic Style: Designing a living room/bedroom/study
room with a XXX aesthetic style.

e Psychological Stimulus and Meaning: Designing a liv-
ing room/bedroom/study room with a XXX psychological
stimulus and meaning.

5.1.4 Procedure. To begin with, participants completed a train-
ing session by first watching a system introduction video covering
EchoLadder and baseline interfaces as well as manual scene edit-
ing controls. They were briefed on the think-aloud protocols and
study procedure. They were asked to perform training tasks that
familiarized them with suggestion interaction and regeneration
features.

In the main session, each participant completed two tasks, each
of a different type, using both EchoLadder and baseline in a coun-
terbalanced order. To reduce fatigue, participants were randomly
assigned two out of the three available task types. This resulted in
a total of four tasks per participant (2 types x 2 conditions). The
tasks involved designing rooms with > 10 objects, starting from an
identical empty VR space.

After each task, participants completed the NASA-TLX ques-
tionnaire [10] to measure perceived mental, physical, and temporal
demands. Participants rated both conditions on 7-point Likert scales
across four dimensions (preference, inspiration, control, implemen-
tation) and participated in a semi-structured interview about their
experiences.

5.1.5 Data Collection and Analysis. We employed a mixed-
method approach to capture both behavioral and subjective mea-
sures:

Behavioral Data. System logs recorded timestamped interac-

tions including: voice commands, suggestion applications/regenerations,

manual edits (additions, deletions, transformations), and undo oper-
ations. These were synchronized with think-aloud audio and screen
recordings for contextual analysis. We summarized patterns in de-
sign and operation strategies by triangulating behavioral logs and
think-aloud observation.

Quantitative Measures. The post-task questionnaire assessed
User Satisfaction using four 7-point Likert scales (1=low, 7=high)
for user preference, inspiration, user control, and system execution.
NASA-TLX scores measured cognitive load across six subscales
(mental, physical, temporal demands; performance; effort; frustra-
tion).

Interview data. Two researchers independently coded 25% of
the interview transcripts using thematic analysis and achieved
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agreement. Discrepancies were resolved through discussion to fi-
nalize the themes.

5.2 Results

In this section, we present both quantitative and qualitative findings.
The quantitative analysis is based on questionnaire ratings, while
the qualitative insights are derived from behavior logs, think-aloud
sessions, and interview transcripts. The think-aloud and interview
data were analyzed using thematic analysis. Two researchers first re-
viewed the data from two participants to establish an observational
protocol and identify initial themes. Once consensus was reached,
one researcher proceeded to analyze the full dataset. We organize
our findings based on our research questions in the following.

5.2.1 User Satisfaction, Experience and Workload (RQT1).

User Satisfaction, Control and Engagement. Based on user
subjective ratings (as shown in Figure 8), EchoLadder achieved
significantly higher Inspiration scores than baseline (mean = 5.75
vs. 4, p = 0.032), indicating stronger creativity support. Its average
rating also outperformed the baseline on user preference, perceived
user control and quality of suggestion execution.

In the interviews, 7 out of 12 participants agreed that EchoLadder
fostered a stronger sense of agency in decision-making and content
modification due to the flexibility of accepting, rejecting, or adjust-
ing Al-generated suggestions. As P2 noted, EchoLadder felt “more
reassuring” because it allowes “make independent decisions and mod-
ify every Al-proposed change”. Specifically, 6 participants appreci-
ated seeing the AI’s reasoning process through textual suggestions,
which enhanced controllability through procedural visibility. As P9
stated: “EchoLadder makes me feel like 'm a grading teacher and can
see and interact with AI’s throught process.” Additionally, 7 partici-
pants valued the ability to apply, undo, or regenerate suggestions,
granting them operational flexibility and modification authority
at each stage. For instance, P11 mentioned: “Because suggestions
can be undone and regenerated multiple times, I can try them one by
one. If I don’t like them, I can just stop generating”. P8 added that
most of the time LLMs fail to fully understand the intention so the
option of selective generation allows them to “cut losses midway”.
Overall, EchoLadder fosters stronger control and engagement and
make user feel like “T am the master, and it is just a tool” (P9).

Perceived Work Load and Manual Operations. In terms of
perceived workload measured through NASA TLX (Figure 11), we
ran a Wilcoxon signed-rank test due to a violation of normality.
We found no statistical difference between EchoLadder and the
baseline on any of the measures. Qualitative findings revealed some
potential causes of mental and physical load. Regarding mental load,
while many appreciated EchoLadder’s structured approach, some
found it taxing: P1 compared it to “converting word problems into
multiple-choice questions,” and others (P2, P3) experienced decision
fatigue from evaluating numerous suggestions. P3, a non-designer,
felt it was “more demanding” and preferred the baseline’s ready-
made results. However, the baseline’s “all-at-once” generation (P7,
P9) often overwhelmed users when outputs missed their intent,
sometimes discouraging iteration—as seen in P4’s passive “Just like
it” acceptance. In terms of physical load, both conditions required
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Figure 8: Subjective ratings from participants for EchoLadder
vs. Baseline. The error bar represents the standard deviation.
Statistically significant effects are marked (x = p < 0.05).
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Figure 9: Average percentage of manual operations using
EchoLadder and baseline. Statistical significant effects are
marked (s = p < 0.01).

similar effort for fine-tuning, but the baseline demanded more cor-
rective actions, with users frequently deleting misplaced objects
(P1, P6, P11). EchoLadder reduced “sunk effort” (P9) by allowing
early rejection.

To provide an additional perspective on workload, we computed
the ratios of manual operations in each task from all participants’
interaction logs. We examined the normality of the data and tested
for significance by t-test. As illustrated in Figure 9, the manual oper-
ation rate of EchoLadder (EchoLadder: mean = 0.6715,SD = 0.159,
Baseline: mean = 0.7916,SD = 0.189, p = 0.003) was significantly
lower in Possible interpretations include EchoLadder saved more
effort of trivial manual operations, and/or participants engaged
more with hands-on crafting in the design process.

Effects of Providing Suggestions in EchoLadder. As providing
interactive suggestions is the core feature of our system’s interface
innovation, we dived into analyzing how participants used it and
understanding its effects.

We first calculated the Suggestion Acceptance Rate from the sys-
tem log as the ratio of accepted suggestions (applied and not re-
tracted) to the total suggestions provided per task. The overall
acceptance rate averaged 70.2% (SD = 0.196), with 7 of 12 partici-
pants exceeding the mean, though individual rates varied widely
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Figure 10: Average suggestions acceptance rate of each par-
ticipant.

(e.g., 90% for P7 vs. 23% for P5), as shown in Figure 10. This indicates
that our system-generated suggestions are generally reasonable
and well-used. Three main reasons for rejecting suggestions are
identified from interviews: (1) Content mismatches, where proposals
conflicted with design intent (e.g., P12 dismissing a dining table— T
don’t want this”, Style Task S1); (2) Poor execution of accepted sugges-
tions, later undone due to unsuitable colors (P2/P8) or implausible
layouts (“This implementation is crazy”, P2); and (3) Redundancy,
where users ignored excess suggestions after core needs were met
(P12 stopping after four proposals: “Content is sufficient—I'll adjust
manually”).

Interview findings reflected three key benefits of the suggestion-
based approach:

(1) Decision Support & Creativity Stimulation. Suggestions ef-
fectively scaffolded the design process by addressing both
ideation bottlenecks and choice overload. For users strug-
gling with initial direction (e.g., P2’s uncertainty about color
schemes or P12 “didn’t know what to do next” shown in Fig-
ure 12 Task 2), suggestions provided concrete starting points.
Conversely, when overwhelmed by options, participants like
P4 appreciated how suggestions helped “narrow thinking di-
rections”. The sequential nature of suggestions also fostered
creative connections—P7’s experience typified this, where an
initial sofa color suggestion naturally led to complementary
furniture adjustments, creating design coherence.
Spatial Awareness & Control. Suggestions enhanced 3D scene
manipulation through explicit spatial references. As P6 noted,
directional cues helped users “accurately locate new ele-
ments” in the immersive environment. The modular work-
flow allowed incremental adjustments that participants found
more manageable than holistic generation, e.g., “‘Modifying
elements one-by-one gives better control” (P7). However, this
precision came at a cost: P7 and others reported “higher
workload from individual adjustments”, indicating a trade-off
between control and efficiency.
(3) Design Intent Preservation. Unlike baseline’s monolithic gen-
eration, suggestions maintained stronger alignment with
user intentions through stepwise refinement. When initial
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proposals missed the mark (e.g., P8’s Chinese lantern sug-
gestion), follow-up recommendations (e.g., matching book-
shelf ornaments) enabled course-correction while preserving
the overall design vision. This iterative process reduced the
“start-from-scratch” frustration observed in baseline’s work-
flows.

EchoLadder’s Undo and Regenerate functions proved critical for
managing Al-generated content, with the Undo feature used by 9
out of 12 participants to efficiently correct mismatches between
suggestions and design intent, such as removing unsuitable fur-
niture (P2) or reverting unwanted color changes (P5). Moreover,
six participants also employed Undo as a diagnostic tool to detect
scene changes outside their HMD’s field of view, which is a known
issue in 3D virtual environments [9]. The Apply-Undo-Apply strat-
egy (e.g. Figure 12 P2 Task 1 & P12 Task 3) helped identify subtle
modifications, addressing cases where changes were initially im-
perceptible or too minor to notice (P7,P8). This contrasted with the
baseline, where P7 noted difficulty in tracking changes.

5.22 Creative Strategies and Workflows in the Two Condi-
tions (RQ2). Our analysis revealed systematic differences in how
participants approached scene design across the two conditions.
These manifested in both design iteration activities and operational
workflow patterns. Both conditions shared the same core design
activities and showed slight differences in their iterative workflows
and operational patterns. We also found similarities and differences
in their creativity support, as reported below.

Common Design Activities. Participants engaged in three fun-
damental design activities regardless of the condition. Global plan-
ning involved high-level conceptualization of space functions and
aesthetics, as exemplified by P2’s comprehensive vision: “First,
I established this should be a war-themed bedroom with military
decor”. This typically preceded targeted modifications of specific
aspects—P6’s focused adjustment (“Now make the walls camou-
flage green”) being characteristic. Finally, all participants performed
object-level manipulations, though with differing frequency; P8’s
precise placement (“The TV needs 30cm clearance from the couch”)
typified this granular control.

Slightly Different Iterative Workflows. Building upon these
design activities, we identified three composite workflow strategies.
The most common was top-down refinement, where participants
like P4 progressed systematically from global concepts to specific
implementations as shown in Figure 12 P4 Task 1: ‘] first defined a
‘relaxing lounge’ concept, then selected appropriate furniture styles,
and finally adjusted individual pieces”. This contrasted with the
focused execution approach favored by P6 and others, who transi-
tioned rapidly to object manipulation after minimal planning (‘T
knew it needed a TV, so I placed it first and built around it”).

Interestingly, the baseline enabled a unique cyclic refinement
pattern absent in EchoLadder. As P9 described: ‘T kept oscillating
between adding artworks and tweaking their arrangements—each
adjustment inspired new ideas”. This back-and-forth process was
observed in three participants, suggesting a more exploratory na-
ture of using the baseline to design, in contrast to a more top-down
approach with EchoLadder.
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Different Operational Patterns. The systems elicited different
operation patterns. EchoLadder users predominantly adopted either
sequential (n=8) or batch (n=4) processing. Sequential users like P7
emphasized control: “Applying suggestions one-by-one lets me catch
issues early”. Batch processors like P4 valued efficiency: ‘T execute
everything first, then clean up—it’s faster overall”. The baseline, by
contrast, enabled three distinct modes. The asynchronous approach
was observed in participants (n=>5) like P6 (Figure 12 Task 1) multi-
tasking during generation: “While the AI worked on walls, I placed
furniture”. Others (n=7) preferred post-generation review, with P2
(Figure 12 Task 2 & 3) noting: ‘T let the Al finish completely be-
fore making any edits”. In addition, two manual-centric participants
manually established bases before Al involvement. P9’s explanation
is: ‘T needed to anchor’ my vision first”.

Creativity Support. Three types of creativity support emerged
in both conditions. First, the system clarified vague ideas by ma-
terializing abstract concepts. Participants reported sudden clarity
when seeing concrete suggestions, with P4 noting: “The sofa and
bookshelf suggestions made me instantly visualize arrangements”.
This effect was particularly strong for users with limited initial
vision—P7, who struggled with sports-themed designs, found the
treadmill suggestion pivotal, while P4 described how basic items
like beds naturally prompted complementary additions (“A rug un-
derneath came to mind immediately”). Second, Al proposals broad-
ened design considerations by surfacing overlooked elements. P6’s
experience was typical: “The system reminded me about lighting and
contrast—aspects I'd neglected”. This expansion occurred both for
functional properties (visibility, spatial relationships) and aesthetic
dimensions (color coordination, stylistic coherence). Third, users
frequently adopted unexpectedly fitting suggestions that diverged
from their initial plans. P6’s incorporation of a chandelier in a
princess-themed room exemplified this: T hadn’t considered how
crystal lights would perfect the Barbie aesthetic”. Such discoveries of-
ten produced what P11 described as “a sudden spark of inspiration”.

The two conditions also supported creativity differently in some
aspects. EchoLadder’s textual suggestion lists provided conceptual
starting points, while the baseline generation’s concrete visuals
stimulated more immediate reactions. P9 articulated the difference
between the two modes: “Text is abstract, but objects are tangible.
With the baseline, I still need to mentally process what I see — but
EchoLadder directly provides the thought process”. This might ex-
plain the higher rating on Inspiration in the survey result (Section
5.5.1). However, this potential came with variability—P7 rejected an
unwanted traditional Chinese style scene, but valued the regenerate
option for managing unpredictability: “Quick regeneration makes
the AI's randomness feel controllable’.

5.2.3 User-suggested Improvements. We collected the follow-
ing user suggestions during their think-aloud and interview an-
swers.

Selective scene iteration. Currently, EchoLadder’s Al considers
all objects in the scene when generating suggestions, which lacks
the flexibility of allowing only specific objects to participate in iter-
ative Al suggestions or targeting individual objects for refinement.
On one hand, participants emphasized the need to preserve man-
ually adjusted elements from further Al iterations. For instance,
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P1 stressed the importance of keeping “my completed operations
unaffected” and having “the option to selectively include elements for
Al modification”. Similarly, P1 and P7 expressed frustration when
Al suggestions altered their manually optimized objects. On the
other hand, P1 requested a “focus mode” for modifying individual
objects without affecting others, noting: ‘I need the ability to change
the style of a single object independently without influencing other
objects”.

Iterative prompt crafting. Participants expected the ability to
refine prompts iteratively. P1 wanted to “iterate a prompt by modi-
fying the current one”, while P3 mentioned the need to “regenerate
a single suggestion if the output is unexpected”.

Multimodal prompts. P1 highlighted the need for multimodal
prompts, stating: “I'd prefer prompts to include visual sketches along-
side text”.

Beyond first-person perspective. Participants identified chal-
lenges in spatial orientation within virtual environments. P7 noted,
“Operating on objects one by one in a first-person 3D space is fatigu-
ing”, while P5 remarked: ‘T struggle to gauge the scale of the entire
scene and would greatly benefit from a god’s-eye view to navigate
and inspect the space from above”. These insights suggest a need
for improved scene visualization tools to support navigation and
decision-making.

6 Discussion
6.1 Summary of findings

Our evaluation of EchoLadder demonstrates its effectiveness in
enabling progressive, user-guided VR scene design through Al-
generated interactive suggestions. The ablation study confirmed
the necessity of integrating visual input, object parameters, and Al
suggestions (V+OP+S) to achieve optimal scene generation qual-
ity. This configuration outperformed ablated variants in relevance,
reasonableness, and inspiration, particularly for high-abstraction in-
structions, where the system performed well at translating abstract
concepts into coherent spatial designs.

The user study revealed that EchoLadder significantly enhanced
user creativity and inspiration compared to the baseline genera-
tion, with participants leveraging suggestions to iteratively refine
their designs while retaining agency. By providing textual sugges-
tions, EchoLadder offers figurative hints that trigger spatial associ-
ations and conceptual thinking, introducing unexpected inspiring
elements. Key interaction features—undo, regenerate, and selec-
tive application of suggestions—empowered users to experiment
without fear of irreversible errors, fostering a sense of agency and
engagement absent in baseline’s workflows. By selecting, reading,
and experimenting with suggestions, users gain a more active and
deliberate role in shaping the scene.

6.2 Comparison with Prior Work

EchoLadder advances the field of Al-assisted spatial design by ad-
dressing a critical gap in existing systems: the lack of intermediate
user intervention during scene generation. Unlike end-to-end ap-
proaches like HOLODECK or VRCopilot [32], which limit user in-
put to initial prompts or post-generation adjustments, EchoLadder
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externalizes the AI's reasoning process through actionable sugges-
tions. This aligns with emerging HCI paradigms that emphasize
progressive co-creation outside the spatial design scenarios [5, 27],
where users iteratively steer Al outputs rather than passively accept-
ing results. Our findings echo prior work on Al-supported writing
tools [27], where intermediate suggestions stimulate ideation, but
extend these principles to 3D spatial design by integrating multi-
modal reasoning and immersive interaction.

6.3 Design Implications

Intermediate Suggestions Enhance Creativity. Exposing Al-
generated suggestions as modular, interactable components helps
users bridge the gap between abstract ideas and concrete imple-
mentations. This approach not only mitigates the “blank canvas”
problem but also introduces serendipitous elements that spark new
ideas.

Flexible Control Mechanisms. Features like undo and regener-
ate reduce the cognitive cost of experimentation of ideas, enabling
users to explore divergent design paths without friction. Future
systems should prioritize such reversible interactions to balance au-
tomation with user agency. More exploration of design approaches
facilitating quasi-execution could also be promising.

Abstraction-Aware Al Pipelines. EchoLadder’s strong perfor-
mance on high-abstraction instructions suggests that generative
Al models are more suitable for supporting tasks with relatively
abstract goals. Vague prompts could trigger broader exploratory
suggestions, while concrete requests might prioritize precision.
While aligning mental models is hard for human-AI collaboration,
involving users in the decision making process can facilitate idea
buy-in and co-creation. Perhaps for tasks in medium abstraction
levels, Al systems could shift the discussion with users between
abstraction levels for intent alignment.

6.4 Limitations and Future Work

While EchoLadder demonstrates promise, our studies highlighted
areas for improvement. First is a potentially high cognitive load.
Participants occasionally experienced decision fatigue when eval-
uating multiple suggestions. Future iterations could incorporate
user intent modeling to prioritize or filter suggestions dynamically.
Secondly, users desired finer control over which scene elements
are modified by the Al (e.g., protecting manually adjusted objects).
Implementing “focus modes” or exclusion zones could address this.
In addition, participants also suggested integrating sketches or spa-
tial gestures alongside voice commands to enrich expressiveness.
These are all promising features to add in future systems. Moreover,
there are other meaningful comparisons to evaluate our proposed
system. For instance, comparing it with a similar system like LLM
[6], which shares conceptual similarities but differs in technical
components, could help assess different implementation choices.

7 Conclusion

This work designed, implemented and tested a novel system that
enables progressive spatial design within the immersive VR environ-
ment. It differs from existing approaches by focusing on supporting
iteration through Al-assisted modification rather than zero to one

Hou et al.

generation, which is achieved by enabling users to read and interact
with the intermediate suggestions of Al automation. Our techni-
cal evaluation showed benefits of each of our pipeline component,
while our user evaluation revealed benefits of providing this inter-
mediate layer of interaction, including its better creativity support
and user control. Our study also found that showing suggestions af-
fected users’ creative strategy by leaning more towards a top-down
approach with global planning, while a baseline approach appeared
more exploratory. Our findings underscore the value of progressive
design workflows in immersive environments and provide a foun-
dation for future systems that blend automation with embodied
user agency.
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A Appendix

A.1 Details of Labeling Module
Prompt:

Hou et al.

System Prompt: Assume you're assisting users in automating
picture labeling, You will receive a base64 code of a image. Based
on all this data, generate the information of data as JSON format.
The format should like:

{

"name":"object_name",

"won

"description":"object_description",
"category":"object_category”

}

Here, I will offer you the object_name, you should use it to
generate the JSON. Description should only include the function,
color, material, aesthetics and psychology of this object in the
image, please use at most three simple sentences to finish the
description, try to keep description very concise. Category is
the category in reality of the object in the image. Categories
such as "3D model", "3D shape" and so on are not be allowed.
Do not generate extra string or information when you generate
JSON.

User Prompt: object_name: Armchairl_C1

image: the base64 code of model image.

JSON Format Object Annotation:

{

"name": "Armchairl_C1",

"description”: "This is a contemporary style armchair with a
sleek black color finish, likely made of a material such as leather
or synthetic upholstery. Its design is intended for comfortable
seating with a modern aesthetic, potentially contributing to a
sophisticated and minimalistic ambiance in a living space.’,
"category": "Chair"

}

new elements to enhance the space’s functionality and aesthetic
appeal. Ensure your proposals are clear, specific, and aligned
with the user’s desires, providing a blend of practicality and
innovative design. Please provide modification suggestions and
solutions with JSON format. For example, if you provide some
suggestions, the result is:

{
"suggestions":[

{

"suggestion":"add something and move something, change
color”

3

{

"suggestion":"add something and change color, also, change
style"

3

{

"suggestion":"change color, destroy something"

3

"suggestion":"move something, rotate something"
1
}

Each suggestions item can only include the suggestion, DO
NOT include any other characters. Avoid extraneous text or
characters outside the specified JSON format. The return format
only includes JSON content, start with the first { of json.

User Prompt: User Instruction : User Instruction

Object list: JSON format objects’ parameters.

Top View Image: the base64 code of top view image of scene.

A.2 Details of Generative Module

Scene Understanding:

System Prompt: I will give you a list of objects in json format,
includes the names, coordinate points, rotation vectors, sizes
of the objects, and hexadecimal color codes of objects in the
3D scene, also I will provide you the top view picture of the
3D scene, please understand this scene, please understand this
scene.

User Prompt: Object list: JSON format objects’ parameters.
Top View Image: the base64 code of top view image of scene.

Suggestions Generation:

System Prompt: As a VR scene designer, you are presented
with a detailed information of a 3D space scene. Your task is to

Based on the scene’s current layout, objects’ attributes, and user
commands, propose several creative and feasible suggestions
for adjustments. These suggestions may involve repositioning
furniture, altering object colors, adjusting sizes, or introducing

interpret abstract user instructions for modifying this VR scene.

Suggestions JSON format:
{
"suggestions":[

{

"suggestion":"add a large screen on Wall_N for a cinema effect
and install surround sound speakers around the room"

3

{

"suggestion":"change the wall color to dark gray or black for an
immersive cinema feel"

3

{

"suggestion":"rearrange the room by adding comfortable re-
cliner chairs in front of the screen”

3

"suggestion":"adjust the ceiling height to accommodate a pro-
jector or large screen installation”

1]

}
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Actions Generation:

System Prompt: Translate design suggestions into specific
VR 3D space modifications based on JSON scene parameters.
Output must strictly adhere to the JSON format below, detailing
implementation steps for Add, Move, Rotate, Scale, Color, Style,
and Destroy actions. You must remember DO NOT include other
redundant text in the generated content, the return format only
includes JSON content, start with the first "{" of JSON:

{
"steps": [{

"action": "Specify_Action_Name",

"action_command": "Action_Name {Object_Name} to [Modifica-
tion_Value]",

"selected_obj": "Object_Name",

"key": "Modification_Value"

b

"action": "Specify_Action_Name",

"action_command": "Action_Name {Object_Name} to [Modifica-
tion_Value]",

"selected_obj": "Object_Name",

"key": "Modification_Value"

h

}

Notes: For Add Command: Set ’action_name’ to "Add", use the
format "Add {Object} to [(Position)]", and provide "key" with Vec-
tor3 position in (0,0,0) format as "Modification_Value". For Move
Command: Use "Move {Object_Name} to [(New_Position)]" for-
mat. For Rotate Command: Use "Rotate {Object} [(Angle)]" for-
mat, specifying Vector3 angle in (0,0,0) format in "key". Make
sure the back of objects facing the nearest wall. For Scale Com-
mand: Use "Scale {TV} [1.2] times", should specify scaling extent
as an integer in "key". For Color Command: Use "Color {Table}
to red[(255, 0, 0)]", color require RGB Vector3 in (0,0,0) for-
mat for Modification_Value. For Style Command, Use "Change
{Table} to [Wood]", "key" is the material type as a string, includ-
ing Basket, Black_Plastic, Brick, Bronze_Metal, Copper_metal,
Dark_Oak, Flow_Water, Flower_Pattern, Glass, Glass_Dark,
Golden_metal material, Grass, Leaf Pattern, Leather, Marble,
Rustic_Wood, Shiny_Metal. For Destroy Command: "Destroy
{Cup}", need "selected_obj", action command and key. If the ob-
ject you want to manipulate does not exist in the scene, you
will need to "Add" this object before you manipulate it. Do not
forget {} and () Avoid extraneous text or characters outside the
specified JSON format, the return format only includes json
content, start with the first "{" of JSON"

User Prompt: Suggestion : Suggestion

Object list: JSON format objects’ parameters.

Top View Image: the base64 code of top view image of scene.

Actions JSON format:

{
"steps": [

{

UIST ’25, September 28—-October 01, 2025, Busan, Republic of Korea

"action": "Add",

"action_command": "Add Movie_Poster to [(-3.80, 1.00, 0.05)]",
"selected_obj": "Movie_Poster",

"key": "(-3.80, 1.00, 0.05)"

3

"action": "Move",

"action_command": "Move Movie_Poster to [(-1.00, 1.00, -3.95)]",
"selected_obj": "Movie_Poster",

"key": "(-1.00, 1.00, -3.95)"

1]

i

For "Add" action, EchoLadder sends LLM the object name and
categories list from our 3D model asset. LLM selects appropriate
category and description for the object to be added based on context.
EchoLadder searches for the object that best matches the description
generated by the LLM among the responding category and adds it
to the scene. The specific prompt is as follows:

System Prompt:

I will offer you a name of object, a list of categories, you should
provide me with the perfect category that best fit the object
and the description about the object, description should include
the function, material, aesthetics and psychology of this object,
please use at most three simple sentences to finish the descrip-
tion, try to keep description very concise.you give me categories
you chosen and description as this JSON format:

{
"Category1":"Category1",
"Description":"description”
}
User Prompt:

The object is : object_name.
Categories include: category_list.

A.3 Statistical Data of Ablation Study

Friedman Test
w df  p X3
Relevance 0.315 3 <0.001 148.53
Preference 0.295 3 <0.001 138.96
Reasonableness | 0.128 3 <0.001  60.38
Inspiration 0.242 3 <0.001 113.91
Table 3: Friedman Test of scene modification with different
components conditions.

Category
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Relevance

Preference

Reasonableness

Inspiration

EchoLadder - V+OP+S

mean = 4.18, SD = 0.966

mean = 3.86, SD = 1.100

mean = 3.59, SD = 1.214

mean = 3.80, SD = 1.185

OP+S mean = 3.37,SD = 1.402 mean = 3.01,SD =1.394 mean = 2.99,SD = 1.441 mean = 2.99, SD = 1.441
V+OP mean = 3.24, SD = 1.237 mean = 2.89, SD = 1.240 mean = 2.76, SD = 1.361 mean = 2.76, SD = 1.361
V+S mean = 2.40, SD = 1.192 mean = 2.21, SD = 1.155 mean = 2.39, SD = 1.433 mean = 2.35, SD = 1.187
Table 4: The mean score and SD of each Input Configuration in different categories.
Relevance Preference Reasonableness Inspiration
Low mean = 4.32,SD = 1.08 mean =3.94,SD =1.17 mean =3.92,SD =1.23 mean = 3.40, SD = 1.36

Medium mean = 3.86, SD = 0.97

mean = 3.52,SD = 1.16

mean = 3.12, SD = 1.08

mean = 3.68, SD = 1.11

High

mean = 4.34, SD = 0.85

mean = 4.12, SD = 0.96

mean = 3.60, SD = 1.23

mean = 4.32, SD = 0.82

Table 5: The mean score and SD of different abstraction levels in different categories, in this table Low, Medium, and High are
Low Abstraction, Medium Abstraction and High Abstraction.

Table 6: Statistical data of scene modification with different abstraction levels

Abstraction.

. Friedman Test

Category Abstraction Level W i ? PI0)

Relevance LxMxH 0.099 2 0.007 9.94
Preference LxMxH 0.094 2 0.009 9.373
Reasonableness LxMxH 0.109 2 0.004 10.88
Inspiration LxMxH 0.165 2 <0.001 16.513

Category Abstraction Level Wilcoxon signed-rank tests
w zZ P r

LxM 180 2.800 0.015 0.396

Relevance LxH 175  -0.026 1.0 0.004
MxH 145  -2.568 0.031 0.363

LxM 217 2.103 0.106 0.297

Preference LxH 241  -0.724  0.468 0.102
MxH 165 -2.702 0.021 0.382

LxM 165 3.362 0.002 0.475

Reasonableness LxH 297 1.327  0.554  0.188
MxH 265 1.994 0.046 0.282

LxM 319  -1.100 0.814 0.177

Inspiration LxH 120  -3.550 <0.001 0.545
MxH 107 2.450 0.043 0.453

15-

Score

5-

EchoLadder Baseline

Mental Demand Physical Demand Temporal Demand  Performance

Effort Frustration

. In this table, L, M, H are Low, Medium, and High

Figure 11: NASA TLX results for EchoLadder and baseline (Full score is 21).
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A.4 Participants’ Workflow

Read Suggestion . Apply Suggestion Undo Suggestion * Regenerate Suggestion @ Manual Operation
=y With Suggestions s i i) i @D Psychological Task
&Y (EchoLadder) @ No Suggestions (ETE) Functional Task y g

Design a war style bedroom @7

W =
11 1want a bedroom with a war style —=—> 12 : | want some decorations on the wall —= > Finish
S1 S2 S3 sS4 S5 S2 S1 s3 sS4 S5 S6 S7
Taskl @ @ @ @ @ e o (K 4
R R o ) B ®
[ ] w»
. o
Design a bedroom where can give exciting and fun experiencex %)
»
11 : Show me a fun and exciting bedroom —2 12 : Can you show me a fun and colorful bedroom —2 >3 Finish
Task2
S2 S3 sS4 S5 S6 s7 s8 s9 s10 S1 S2 S3 sS4 S5 S6 s7 s8 s9 s10
P 2 Design a living room with a classic art style g.@
@ s @ 14 : Can you create a classical living room Py
113 1 want a living room — 12 : | want a living room with many artwork —> I3:lwantalivingroom ——> with a lot of artwork —>Finish
Task3

S1 S2 S3 sS4 S5 S6 s1 S2 S3 sS4 S5 S6 s7 S8 s1 S2 S3 S4 S1 s2 S3 sS4 S5 S6

Designing a study room for a relaxing experience (= G(?
. il 12 : Can you add a wooden 13 ¢ Can you change the color 14 : Can you change the color A
11+ 1 want 3 living room — desk next to the window — of the wall and the sofa > of the sofa into a brighter color —>Finish
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Figure 12: Example participants’ workflows (P2, P4, P6, P12).
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