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Figure 1: Immersive VR scene authoring with EchoLadder: EchoLadder makes the process of AI scene modification transparent 
by displaying interactable suggestion modules. Users can better control the AI modification process and modify the scene 
progressively. 
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Abstract 
Mixed reality platforms allow users to create virtual environments, 
yet novice users struggle with both ideation and execution in spa-
tial design. While existing AI models can automatically generate 
scenes based on user prompts, the lack of interactive control limits 
users’ ability to iteratively steer the output. In this paper, we present 
EchoLadder, a novel human-AI collaboration pipeline that leverages 
large vision-language model (LVLM) to support interactive scene 
modification in virtual reality. EchoLadder accepts users’ verbal 
instructions at varied levels of abstraction and spatial specificity, 
generates concrete design suggestions throughout a progressive 
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design process. The suggestions can be automatically applied, re-
generated and retracted by users’ toggle control. Our ablation study 
showed effectiveness of our pipeline components. Our user study 
found that, compared to baseline without showing suggestions, 
EchoLadder better supports user creativity in spatial design. It also 
contributes insights on users’ progressive design strategies under 
AI assistance, providing design implications for future systems. 

CCS Concepts 
• Human-centered computing → Virtual reality; Natural lan-
guage interfaces; Empirical studies in HCI. 

Keywords 
AIGC, LVLMs, Progressive design, VR space authoring, Spatial 
design, Multimodal interface, Natural language input 
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1 Introduction 
Recent advancements in generative 3D scenes, such as text-to-
3D generation [11, 21, 26] and LLM-based scene design [12, 32], 
have introduced novel opportunities for AI-assisted VR authoring 
tools. By combining LLM understanding ability with VR authoring 
tools, these technologies enable users to craft intended immersive 
scenes more effectively. However, these automatic full-generation 
approaches predominantly follow a “black-box” generation model, 
limiting users to repeatedly re-generating or manually revising it 
post-hoc. 

Some recent works have integrated interactive methods to sup-
port users in iteratively building scenes. For instance, VRcopilot [32] 
assists users in authoring VR layouts by allowing them to draw out 
areas or place wireframes to guide furniture generation, thereby 
supporting a scaffolded process. LLMR [6] allows users to use natu-
ral language to modify objects in mixed reality scenes by integrating 
object parameters in the generation pipeline. Such solutions could 
fundamentally improve the support for iterative content creation. 
However, while much work is focused on improving AI pipelines 
for automatic modification, one important question remains: how 
to support user intervention in that process via effective interface 
solutions? 

To fill this gap, we explore a design concept inspired by the effec-
tiveness of “chain of thought” [23], which is an established approach 
for improving the quality of AI generation. Previous works on AI-
assisted writing identified benefits of exposing the thought process 
of generation to users. How would this translate to immersive spa-
tial design? This research introduces a novel interface solution to 
support user intervention in AI-automated scene modification, to 
improve user agency and foster human-AI co-creation. 

In this paper, we introduce a novel system named EchoLadder, 
based on a Large Vision-Language Model (LVLM), GPT-4o, to en-
able progressive and interactive scene construction in VR. Different 
from prior technical solutions [6, 32] executing users’ concrete 

commands, EchoLadder interprets users’ abstract instructions, com-
bines scene images and object parameters to generate concrete 
modification suggestions. The suggestions are displayed as mod-
ular interactive widgets for users to selectively apply, undo, or 
regenerate. Once applied, the system executes a suggestion by mod-
ifying the scene. Users could view the direct visual effect and toggle 
to keep or retract the changes. This approach aims to provide both 
textual explanation and visual preview of each AI-generated step, 
while allowing selective and non-linear execution of them. 

We evaluated EchoLadder through two studies. An ablation study 
assessed the impact of removing each input component of the 
pipeline—visual input, object parameters, and AI suggestions—on the 
quality of generation results. The finding showed that the full input 
configuration used by EchoLadder achieved the best performance. 
A second user study compared EchoLadder with a baseline, which 
leverages the same pipeline for automatic scene modification but 
does not display intermediate suggestions to users. Our findings 
revealed our suggestion-based interface solution could better sup-
port user creativity and control, while leading to some distinct 
differences in design strategies. 

Our contributions are threefold: 

• A novel interface solution supporting user intervention in 
iterative AI-automated authoring of VR scenes. It interprets 
users’ natural language requests at any abstraction level 
and generates interactive suggestions for them to selectively 
apply. 

• An LVLM model-based AI pipeline integrating real-time 
scene understanding and semantic object retrieval to gen-
erate 3D scene modifications responding to users’ natural 
language requests. The effectiveness of each pipeline com-
ponent is validated by an ablation study. 

• Empirical findings from a comparative user study evaluating 
EchoLadder against an AI-modification baseline, demonstrat-
ing the effectiveness of our suggestion-based design, and 
providing insights into how participants used the system. 

2 Related Work 

2.1 AI-assisted scene generation 
There has been existing research on AI-assisted interior design, 
both in 2D and 3D. Large models contribute a lot to 2D interior 
design. For example, an Interactive Interior Design Recommen-
dation System [28] based on reinforcement learning. The interac-
tion with the user taps into the potential preferences of the home-
owner and selects the appropriate initial design. Virtual Interior 
DESign system [14], leveraging cutting-edge technology in gen-
erative AI to assist users in generating and editing indoor scene 
concepts quickly, given user text description and visual guidance. 
C2Ideas [12], through large models to better automate the genera-
tion of interior color design schemes that are more consistent with 
users’ ideas. 

Before the bloom of LLMs, traditional AI has been well used for 
3D scenes synthesis. For example, the traditional method of using 
CLIPGraphs [2] can better estimate the position of objects in an 
indoor scene from a benchmark set of object categories. CompoN-
eRF [3], which interprets complex text into editable 3D layouts 
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and supports innovative multi-object composition. And a frame-
work [33] for quickly synthesizing indoor scenes, measuring more 
reasonable relationships between objects through CSR, and generat-
ing various performations simultaneously in seconds. A system [7] 
for adaptive synthesis of indoor scenes given an empty room and 
only a few object categories. It exploit a database of 2D floor plans 
to extract object relations and uses the similar plan references to 
create the layout of synthesized scenes. 

Benefiting from LLMs’ strong ability in understanding and rea-
soning, some recent work on LLM-assisted 3D scene creation im-
proves AI-assisted generation, making it more aligned with users’ 
intentions. For example, Hong et al. proposed 3D-LLMs [11] that 
take 3D point clouds and their features as input and perform a 
diverse set of 3D-related tasks. Additionally, Sun et al. developed 
3D-GPT [21], which integrates three core agents (the task dispatch 
agent, the conceptualization agent, and the modeling agent) to 
conduct an instruction-draven 3D modeling and positions LLM as 
problem solvers. Moreover, Yang et al. developed a fully automatic 
system, HOLODECK [26], that can generate diverse 3D scenes with 
user customized styles. 

While bringing benefits, however, these previous works mainly 
employ end-to-end generation approaches that automativally gen-
erate entire scene in one go, instead of allow users to intervene the 
generation process. Inspired by this, our work bridges the gap by 
allowing users to interactively iterate and modify the generated 
scenes, with the system creating suggestions and modifications 
based on the real-time status of the scenes. 

2.2 Immersive creativity support 
With the development of VR technology, the demand for creation 
of virtual scenes has become more and more abundant. A lot of pre-
vious work has focused on the immersive creativity support for VR 
scenes. The traditional Visual Worlds in Miniature metaphor [20] 
provides a user interface technique for creating 3D scenes from 
different perspectives. Recently, there has also been a lot of work 
focused on improving the creative experience of VR immersion, 
Including creating more novel ways of interacting with VR/AR [16, 
31, 34], as well as exploring the topic of collaborative immersive 
creation [8, 15]. For example, VRGit [29], a new collaborative VCS 
that visualizes version history as a directed graph composed of 3D 
miniatures, and enables users to easily navigate versions, create 
branches, as well as preview and reuse versions directly in VR. 
FlowMatic [31], an immersive authoring tool that raises the ceiling 
of expressiveness by allowing programmers to specify reactive be-
havior. Different from existing creative support in VR scenes, we 
leverage Vision-LLMs to support the creativity and manipulation 
of content creation. 

2.3 AI-supported progressive scene crafting 
The progressiveness of AI-supported content creation lies in its iter-
ative refinement process, where users retain authority and guide 
the AI’s execution. This progressive approach has demonstrated 
significant benefits across multiple HCI studies, such as writing 
stories with AI suggesting plot, style, and tone to facilitate rapid 
creative iteration [5, 27]. While the concept of progressiveness in AI 
generation of 3D space has not been widely explored, recent works 

have made significant contributions by bridging LLMs and 3D con-
tent creation. For example, researchers have proposed pipelines to 
enhance LLMs’ understanding of user design intent and generate 
style-aligned scenes, as seen in HOLODECK [26]. 3D-GPT [21] sup-
ports iterative natural language commands to generate and author 
a 3D scene, eg. changing the color of generated flowers. Meanwhile, 
HCI research has focused on interactivity between users and LLMs 
to improve controllability. For instance, Zhang et al. introduced VR-
Copilot [32], an LLM-assisted authoring system that improves 3D 
layout generation by allowing users to scaffold or guide the LLM’s 
output via wireframing. Additionally, Torre et al. [6] presented the 
Large Language Model for Mixed Reality (LLMR), which supports 
scene understanding, task planning, self-debugging, and memory 
management, enabling users to create scene content iteratively by 
modifying object parameters. The novelty of EchoLadder lies in its 
focus on supporting user intervention in automated scene modifi-
cation while interpreting abstract user requests. Our AI pipeline 
integrates real-time full-scene understanding (vision + object-level 
parameters) and semantic-matching object retrieval to enable au-
tomatically adding objects to reasonable positions. While existing 
works directly execute one authoring process following user com-
mands, EchoLadder uniquely introduces interactive suggestions 
as intermediate explanation, visualization and control support to 
bridge automated execution and manual adjustment for each au-
thoring operation. 

3 EchoLadder 
In this section, we present the system design of EchoLadder. EchoLad-
der is a novel AI-assisted VR scene design system that interprets 
user intent, generates context-aware design suggestions, and facili-
tates controllable, iterative construction in immersive environments. 
In EchoLadder, Labeling Module leverages LVLM to automatically 
annotate 3D assets with accurate object-matching information, en-
abling faster and more precise object retrieval while eliminating 
the need for manual selection or browsing by the user. Generative 
Module module understands natural language instructions, based 
on the current scene context (visual input and object parameters) 
to generate relevant suggestions for scene modification. It auto-
matically handles object selection and editing, allowing users to 
freely express their ideas in language while the system performs 
spatial reasoning and executes the corresponding logic. Addition-
ally, rather than executing user instructions directly, the system 
generates one or more suggestions for each instruction. Users can 
preview, apply, undo, or regenerate each suggestion individually, 
combining manual adjustments to iteratively construct the envi-
ronment and refine their design decisions. 

We position EchoLadder within the domian of interior design, a 
representative and well-established application area for immersive 
authoring tools [30, 32], such as Home Design 3D VR1 and IKEA 
Virtual Interior Designer2 . However, EchoLadder is not limited to 
this domain and can be generalized to other spatial design tasks. 
The prototyping system developed in this paper contains 2156 3D 
models for interior design from the Unity Asset Store includes a 

1https://en.homedesign3d.net/vr
2https://present.digital/ikea/ 

https://1https://en.homedesign3d.net/vr
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Figure 2: Voice input for user requests: (a) Initial state allows a 
user to input instruction after pressing the Mic button. (b) Mic 
button changes to Stop when accepting voice input. (c) Click 
Mic again to stop recording and check the transcribed user 
request. Clicking the AI Assistant button will start generating 
suggestions. 

wide range of furniture, decorations and textures. The scene modi-
fication operations supported by our system are derived from prior 
literature [29, 32] and existing VR application [1]. These operations 
encompass common object-level tasks in interior design, includ-
ing: adding 3D objects (Add), modifying object positions (Move), 
rotating (Rotate), scaling (Scale), changing colors (Color), adjusting 
materials or styles (Material), and removing objects (Destroy). 

3.1 Interaction Design 
In this section, we describe interactions of EchoLadder. 

3.1.1 Instruction Input. Considering the absence of physical 
keyboards in VR and the inefficiency of virtual typing [13, 18], we 
adopt intuitive voice [19] for user instruction input. As shown in 
Figure 2, once the interaction interface is activated, users initiate 
voice recording by selecting the microphone icon using either the 
controller button or raycasting. The icon turns red to indicate active 
listening. After issuing a instruction, users select the icon again to 
stop recording, upon which the system transcribes the voice input 
into text and displays it on the interface. Based on the transcription 
accuracy, users can either proceed with the next operation or re-
record the instruction. 

3.1.2 User Interaction with Suggestions. Our system uniquely 
introduces the display of interactive suggestions in order to show 
AI’s reasoning process and selectively intervene in automated scene 
modification. Once the user confirms the instruction, they can se-
lect “AI Assistan” button on the interface. The Generative Module 
then parses the user instruction, object parameters and visual in-
formation to generate suggestions, which are individually listed on 
the interface (Figure 3). Once suggestions are generated, the user is 
offered three interaction options. 

Browsing Suggestions. We provide two ways to help users 
browse suggestions, text reading and voice reading. Users can ei-
ther read the textual content displayed in the interface or have 
the system read a suggestion aloud by clicking the joystick after 
scrolling down the list (by moving the joystick) to locate it. 

Apply and Undo Suggestion. Users can decide whether to ap-
ply a suggestion to preview its effect within the scene. Since the 

(a) (b) 

Figure 3: AI-generated suggestions and their status in the 
interface. (a) Aystem displays the generated suggestions af-
ter interpreting the user request. (b) Three statuses of the 
suggestions: White (Generation of spatial modification in 
progress), Blue (Generation completed, pending application), 
Green (Applied). 

system requires time to translate suggestions into executable ac-
tions, we use colored borders to indicate the current processing 
status. As shown in Figure 3(b), a white border (Processing) indi-
cates that the AI is generating the corresponding actions in the 
background. During this phase, users can browse the suggestions 
but cannot apply them. Once the system completes the analysis and 
successfully generates the actions, the suggestion border turns blue 
(Pending Application), indicating that it is ready to be applied to the 
scene. After the user confirms the application and the actions are 
successfully executed in the VR environment, the suggestion border 
turns green (Applied). The user could view the post-modification 
effect in the VR environment. In addition, our system supports 
undoing applied suggestions. When users click on a previously 
applied suggestion, the system rolls back all modifications associ-
ated with that specific suggestion without affecting others. This 
immediate restoration of the VR scene enhances user control and 
flexibility. 

Regenerate Suggestion. If users are not satisfied with the out-
come of a generated suggestion, our system provides a suggestion 
regeneration function (via the “Regenerate” button next to each 
suggestion). This allows users to modify the result of a single sugges-
tion without re-entering the original instruction. Upon triggering 
regeneration, the suggestion border turns white, and the Generative 
Module regenerates the corresponding actions based on the current 
scene context. 

3.1.3 Immersive Manual Authoring Interactions. The system 
provides manual operations to support users to customize the de-
sign more freely. The manual operations include object modification 
and object addition: 

Object Modification. The system provides the following man-
ual operations for modifying virtual objects: 

• Select objects using the ray on the right-hand controller of 
VR device. 

• Manipulate objects by moving them along the handle ray, 
rotating them, or adjusting their size. 
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• Modify object properties, including color and material, or 
delete objects via the interface. 

Manual Objects Addition. The manual object addition menu 
enables users to browse and select object categories for searching 
3D models. Selecting a category displays a list of available objects 
under that classification. Users can then add an object by clicking 
on its corresponding preview image. It is important to note that 
the objects available for manual addition differ from those that 
can be automatically generated by the AI pipeline. This distinction 
ensures that users retain control over manual customization while 
leveraging AI-driven automation where necessary. 

3.2 Technical Architecture 
In this section, we introduce the architecture of EchoLadder in the 
immersive authoring system. There are two main modules: Labeling 
Module and Generative Module. 

3.2.1 Labeling Module. For the system to automatically add 
objects that match user’s requests based on a mixture of considera-
tions such as function and style, we designed a Labeling Module to 
perform multi-dimensional, high-levelsemantic labeling for our 3D 
models. To the best of our knowledge, there were no publicly avail-
able datasets that meet our needs at the time we built the system. 
To be specific, the Labeling Module has two main parts: 

Automatic Annotation of 3D Asset. Using LVLMs for image 
annotation has proven to be an effective approach [24, 25]. This part 
includes four steps. First, thumbnails of all 3D models in system 
asset repository are extracted as the dataset for labeling. Second, 
the LVLM (GPT-4o) is used to iteratively generate open-vocabulary 
labels for each 3D model. These annotations include the model 
name, category, and a description summary (e.g., functions, colors), 
all inferred from the visual content of the thumbnails. Third, the 
generated annotations are structured in JSON format and stored 
as text files. The prompts and example of JSON file are available in 
Appendix A.1. Finally, we manually reviewed the labeled content, 
with a particular focus on verifying the model description. 

Asset Matching. As shown in Figure 4, when Generative Mod-
ule outputs an action such as “add a comfortable sofa in a neutral 
color”, it generates a corresponding description based on the user’s 
intent and the specified action. It then passes the object name and 
description (e.g., “sofa”) to Labeling Module. The Labeling Module 
first identifies the appropriate object category using pre-assigned 
labels, and then employs a natural language processing algorithm 
(Sentence-BERT, or S-BERT) to retrieve the most relevant asset 
from the 3D model library—such as a light gray fabric sofa—that 
best matches the generated description. 

3.2.2 Generative Module. In this system, the Generative Module 
is responsible for interpreting user instructions, visual input and 
object parameters, subsequently generating scene modification sug-
gestions along with specific execution actions. The entire process 
can be decomposed into the following four key steps: 

User Intent Recognition and Scene Comprehension. The Gen-
erative Module first parses the input provided by the user (Appen-
dix A.2). As shown in Figure 4, the input consists of three primary 

components: user intent (Instruction), visual information (Top view 
image of scene), and object parameters (Parameters for each at-
tribute of scene objects) which includes objects’ position, rotation, 
scale, color, and material (Style). After receiving these input, the 
Generative Module analyzes the current scene by combining the 
visual and object parameters to identify objects, their attributes, and 
spatial relationships. Finally, through multimodal reasoning, the 
system determines whether the user’s instruction aligns with the 
existing scene and generates actionable suggestions accordingly. 

Generate Reasonable Scene Modification Suggestions. The 
Generative Module formulates suggestions based on the previously 
analyzed information. As shown in Figure 4 (Suggestions Genera-
tion), the module infers the most reasonable modifications by con-
sidering both the user’s instruction and the current scene context— 
such as adjusting the position, size, color of objects, or adding 
new elements to the scene. These suggestions are structured in 
JSON format (Appendix A.2) for downstream processing. The JSON-
formatted suggestions are then parsed and converted to interactive 
buttons within the user interface. Finally, all suggested modifica-
tions are visually rendered, allowing users to browse and review 
them before making a decision. 

Translating Suggestions into Executable Actions. At this 
stage, the Generative Module proceeds to the Action Generation 
phase (Figure 4, Action Generation), where it transforms the gener-
ated suggestions into actions that can be directly applied to the VR 
scene. The system leverages LVLM to understand the scene, then 
parse each suggestion into action lists in JSON format (more details 
in Appendix A.2). Each action represents an executable command 
generated by the Generative Module for a given suggestion, enabling 
automated scene modification. First, the module iterates through 
each suggestion, using the visual information, object parameters 
and suggestions as input, generates a set of concrete actions. These 
actions include Move, Scale, Rotate, Color, Style, Delete, and Add 
operations. For example, a suggestion like “add a neutral-colored 
sofa” could be translated into actions such as Add [sofa] and Move 
[sofa] to (𝑥, 𝑦, 𝑧). By interpreting both the object parameters and 
visual information, the system tries to place objects at appropriate 
positions in reasonable sizes. For actions involving the addition of 
new objects, the Labeling Module is invoked to retrieve a suitable 
object from the 3D model library and return it to the Generative 
Module. Finally, all generated actions are scructured in JSON format 
and associated with their corresponding suggestion. When the user 
applies a suggestion, all linked actions are executed in sequence 
with in the VR scene. 

3.3 Implementation 
The prototype system presented in this paper was developed using 
Unity (version 2021.3.8f1c1) and integrated with SteamVR 2.8.0, en-
abling compatibility with both Meta Quest and HTC Vive headsets. 
The application featured advanced speech recognition and response 
capabilities through the integration of Whisper (Audio Model) and 
GPT-4o (Large Vision-Language Model, LVLM), allowing for nat-
ural and efficient user interaction. The system was deployed on 
a Windows 11 desktop equipped with an Intel Core i7-13650HX 
CPU, 32 GB of RAM, and a NVIDIA GeForce RTX 4060 GPU, which 
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Figure 4: EchoLadder: In each iteration, the user provides a natural language instruction along with visual and object parameters 
as input. The Generative Module then produces design suggestions and corresponding actions. These suggestions are presented 
in the interface, and Add actions are linked to relevant assets by the Labeling Module. Users can browses, apply, undo and 
regernerate suggestions, optionally making manual refinements. This process results in a progressively and iteratively updated 
scene. 

provided robust performance for real-time VR scene generation 
and interaction. To facilitates information transfer and processing 
for LVLM, we integrated OpenAI’s GPT-4o API. Additionally, a 
socket-based Python server was established to execute the S-BERT 
(Sentence-BERT) algorithm, enabling efficient object search and 
matching during the Add operation. In user interactions, users 
can select objects, manipulate objects, and make UI selections for 
menus with the ray on right-hand joy stick. Users can open and 
close menus, select suggestions, and interact with suggestions with 
the buttons on the left-hand joystick. 

4 Study 1 - Pipeline Evaluation 
We conducted an ablation study to evaluate the impact of different 
input components in EchoLadder. Considering that the users’ verbal 
instructions for spatial design can vary at abstraction levels and 
design goals, we designed two additional independent variables in 
this study. The study has two primary objectives: 

• Evaluate the generation quality of our pipeline components 
by comparing scene modification quality across four input 
configurations. 

• Examine how our pipeline performs for instructions with 
different abstraction levels. 

4.1 Study Design 
To evaluate the effectiveness of the pipeline input information 
proposed in this paper, we designed this ablation experiment. First, 
we tested the difference between the final scene results generated 

by four components conditions containing different information. 
The four components conditions are: 

• Vision + object parameters + Suggestions (𝑉 + 𝑂𝑃 + 𝑆): In-
cludes scene image information (Vision), scene object pa-
rameter information (object parameters) and AI-generated 
suggestions (Suggestions). 

• Vision + Suggestions (𝑉 + 𝑆): Includes scene image informa-
tion and AI-generated suggestions. 

• Vision + Object parameters (𝑉 + 𝑂𝑃 ): Includes scene image 
information and scene object parameter information. 

• Object parameters + Suggestions(𝑂𝑃 + 𝑆): Includes scene 
object parameter information and AI-generated suggestions. 

Then, in order to evaluate the impact of modifying scenarios with 
instructions, we first design our instruction list. Based on the three 
interior design requirement dimensions: functional requirements, 
aesthetic style, and psychological stimulus and meaning [4] and 
three different levels of natural language abstraction (Low, Medium, 
High) [17, 22], we designed 9 instructions (3 dimensions × 3 ab-
straction levels = 9 instructions) as shown in Table 1 and used each 
instruction to generate with the same initial scenario under four 
components conditions (36 results, 3 dimensions × 3 abstraction 
levels × 4 components conditions). Instructions differed between 
abstraction levels. We counteracted the effects of abstraction level 
and components conditions. The instructions were carefully crafted 
to differ across abstraction levels, allowing us to isolate and coun-
terbalance the effects of both abstraction level and components 
condition on the final scene outcomes. 
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Design goal Low Abstraction Medium Abstraction High Abstraction 

Functional Requirements “Add a large screen TV on the 
wall opposite the couch.” 

“Set up a home theater area for movie 
nights.” 

“Design a space that brings the cinema 
experience home.” 

Aesthetic Style “Change the sofa color to navy 
blue.” 

“Apply a nautical theme to the living 
room.” 

“Evoke the tranquility of the ocean in 
the living space.” 

Psychological Stimula-
tion 

“Place a small plant on the coffee 
table.” 

“Introduce elements of nature to en-
hance relaxation.” 

“Creating a spatial atmosphere that 
harmonizes with nature to promote 
balance and relaxation.” 

Table 1: Natural language instructions tested in Study 1, categorized by design goals and levels of abstraction. 

Measures Questions 
Relevance How relevant is the scenario generation/modification to the instruction? (Q1) 
Preference How much do you prefer the generation/modification outcome in this condition? (Q2) 
Reasonableness How reasonable is the scenario generation/modification? (Q3) 
Inspiration How inspiring do you find this generation/modification outcome? (Q4) 
Open-ended question Why do you like and dislike the outcome of each condition? (Q5) 

Table 2: Questions for Study1 questionnaire. 

4.1.1 Task and Procedure. The evaluation procedure was de-
signed to enable systematic comparison of scene generation quality 
across different input conditions. We presented participants with 
36 generated scenarios (9 instructions × 4 input configurations) 
through a standardized slide deck. Each slide displayed an initial 
scene alongside its modified version generated through one input 
configuration, with both scenes shown from two distinct viewpoints 
to provide comprehensive visual context. 

To minimize order effects, we employed a Latin square design 
to counterbalance both abstraction levels and instructions within 
each level (3 abstraction levels × 3 instructions = 9 sequences). 
we implemented full randomization of both instruction sequences 
and input component condition presentations for each participant. 
Before beginning the evaluation, participants were asked to review 
the evaluation guidelines and confirm their understanding of the 
scoring criteria with the experimenter. 

During the study, participants proceeded through the slide deck 
in their randomized order. For each instruction set, they viewed 
all four component condition variants (labeled A-D) before provid-
ing ratings on a questionnaire. This grouped evaluation approach 
helped participants make relative judgments across conditions 
while maintaining the context of each design instruction. After 
assessing all visual materials for a given instruction, participants 
recorded their 5-point Likert scale ratings for each dimension and 
provided qualitative feedback through open-ended responses. The 
complete procedure required approximately 60 minutes per partici-
pant. 

4.1.2 Data Collection. Participants evaluated generated scenes 
through a structured questionnaire (see Table 2) adapted from a 
recent work [12]. The questionnaire assessed four key dimensions 

below. Each dimension used a 5-point Likert scale (1 = “Strongly 
disagre” to 5 = “Strongly agree”). 

• Relevance measured how well the generated scenes matched 
the instruction intent. Participants evaluated whether ele-
ments like object selection and spatial arrangements properly 
reflected requests. 

• Preference captured subjective satisfaction with the gener-
ated outcome in each scene. 

• Reasonableness assessed physical plausibility, including 
proper object scaling, absence of collisions, and realistic 
material properties. 

• Inspiration evaluated the novelty and creative potential 
of each output, determining whether results sparked new 
design ideas. 

Open-ended responses were recorded via audio and later tran-
scribed into text as participants’ feedback. 

4.1.3 Participants. We recruited 18 participants (5 female, 13 
male) aged 20 to 30 years (mean = 25.5, SD = 1.98), recruited through 
university mailing lists. The participants have diverse academic 
backgrounds including Engineering, Design/Art, Biology, Chem-
istry and English. Ten participants reported prior experience with 
immersive space design applications. 

4.2 Results 
We collected a total of 2754 answers (9 instructions × 4 components 
conditions × 4 categories questions × 18 participants + 9 instruc-
tions × 1 open-ended question × 18 participants). Based on these 
results, we analyzed the data for different components conditions 
and abstraction levels. 
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Figure 5: Results of Ablation Study comparing Input Con-
figurations. The error bar represents the standard deviation. 
Statistical significant effects are marked (∗ = p < 0.05, ∗∗ = p < 
0.01, ∗ ∗ ∗ = p < 0.001). 

4.2.1 Evaluation of Pipeline Components. After confirming 
non-normal distribution, we employed the non-parametric Fried-
man test (Table 3) to detect significant effects in the evaluation 
results. For pairwise comparisons, we used the Wilcoxon signed 
rank test. We find that the component condition of EchoLadder 
(𝑉 + 𝑂𝑃 + 𝑆) shows the best performance in different categories. As 
shown in Figure 5, statistically significant comparisons are marked 
with stars. The evaluations of Input Configuration are as follow: 

Full Pipeline: Vision + SceneInfo + Suggestions(𝑉 + 𝑂𝑃 + 𝑆). 
Our full pipeline outperformed the other three ablated conditions 
across all the evaluation categories. As shown in Table 4 and Fig-
ure 5, this full input configuration achieved significantly higher 
scores in relevance, preference, reasonableness, and inspiration 
than all the other configurations. These results demonstrate that 
each of the three input components plays an essential role in the 
system’s performance. 

From open-ended questions in the questionnaires, we found this 
input configuration improved the ability of EchoLadder to generate 
thematically appropriate content with high relevance, such as beach 
and beach volleyball (Figure 7 (2)) and executing instructions with 
minimal deviation (Figure 7 (1)). It maintained spatial accuracy, 
with correctly placed and oriented furniture, and achieved stylistic 
consistency, rendering elements like nautical wallpapers and ocean-
themed decorations that aligned with user-specified atmospheres 
(Figures 7 (2–3)). Finally, EchoLadder exhibited strong inspirational 
potential, introducing unexpected yet fitting elements—such as sand 
or a well—that enriched the scene and exceeded user expectations 
without sacrificing contextual fidelity (Figure 7 (2)). 

Removing Object Parameters (𝑉 + 𝑆). This input configuration 
performed significantly worse than all the other conditions across 
all evaluation categories. This condition lacks object parameters, 
which likely undermines the ability of AI to interpret spatial context 
and generate coherent or appropriate modifications. Without access 
to parameters such as position and scale, AI struggles to produce 
relevant, well-aligned, or inspiring outcomes, despite having visual 

Figure 6: Results of comparing abstraction levels (only in 𝑉 + 
𝑂𝑃 + 𝑆 - full pipeline condition). The error bar represents the 
standard deviation. Statistical significant effects are marked 
(∗ = p < 0.05, ∗∗ = p < 0.01, ∗ ∗ ∗ = p < 0.001). 

input and suggestions. The system struggled to identify relevant 
objects, resulting in poor thematic alignment. As shown in Figure 7 
(5)–(6), objects in the scene are not coherent to the ocean theme. 
Layout errors are more severe, such as furniture overlap in Figure 7 
(5)–(6) and illogical spatial arrangements. 

Removing Vision (𝑂𝑃 + 𝑆) and removing suggestions (𝑉 + 
𝑂𝑃 ). These two conditions had mediocre performances compared 
with other conditions. While 𝑂𝑃 + 𝑆 yielded slightly higher mean 
scores than 𝑉 + 𝑂𝑃 in all evaluation categories, the differences 
were not statistically significant. From the open-ended questions, 
we found that without vision (𝑂𝑃 + 𝑆), it impaired the LVLM’s 
spatial reasoning and color coordination. This was reflected in 
severe layout issues, including overlapping objects and irrational 
layouts such as the sofa overlaps with bookshelves in Figure 7 (11). 
Color perception suffered similarly, for ocean-themed modifications, 
results were reported as “not blue enough” in Figure 7 (7). On the 
other hand, the absence of suggestions (𝑉 + 𝑂𝑃 ) constrained the 
LLM’s creative capacity, producing minimal modifications, such as 
Figure 7 (8). It also frequently introduced contextually inappropriate 
objects like a drum kit in a ocean themed room in Figure 7 (9). 

4.2.2 Effects of Abstraction Levels. We analyzed the effects of 
Abstraction Level on the generated results using only the data in 
the full pipeline condition (𝑉 + 𝑂𝑃 + 𝑆) (EchoLadder) across levels 
of abstraction. Same as section 4.2.1, we confirmed non-normal 
distribution of data, employed Friedman test to detect significant 
effects. For pairwise comparisons the Wilcoxon signed-rank test 
was used. While details of the statistical analysis results are in the 
Appendix A.3, we highlight the main findings here. 

Overall we can see in Figure 6, the system performed better 
for instructions at low and high abstraction level than at medium 
abstraction for Relevance, Preference and Reasonableness, but not 
for Inspiration. Instructions at a higher abstraction level seem to 
generate more inspiring outcome. 

Low Abstraction. We can see that low abstraction instructions 
shows high relevance score and reasonableness score which are 
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Figure 7: Results of scene modification under four pipeline input configuration conditions. The first row is the starting VR scene 
for all conditions, each subsequent row is for one condition. The columns from left to write show examples of instructions in 
low, medium to high abstraction level. 

significantly higher than medium abstraction instructions. This 
might be caused by their explicit nature, yielding precise execu-
tions that from open-ended questions answers called “precise” and 
“directional”. However, this specificity came at a cost: while func-
tionally reliable, this condition scored poorly in Inspiration which is 
significantly lower than other abstraction levels, as the predictable 

outcomes of low abstraction instructions don’t need additional 
operations, which offers little novelty. 

Medium Abstraction. Our pipeline performed worse for medium 
abstraction instructions across metrics. For Relevance & Reasonable-
ness, significantly lower than low abstraction and high abstraction 
(Figure 6). Medium abstraction instructions occupied an awkward 
middle ground — clearer than high abstraction but vaguer than 
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low abstraction. In this condition, we find answers of open-ended 
question were more sensitive to imperfections, such as one extra 
object will make the answer negative. This probably impacted Pref-
erence, where this condition was least favored due to perceived lack 
of creativity and inconsistent execution (Figure 7 (2), the sand is a 
little strange). Its Inspiration score suffered similarly, with outputs 
deemed neither reliably accurate nor meaningfully novel, failing to 
deliver on the strengths of either extreme. 

High Abstraction. Our pipeline performed strongly across all 
metrics for high abstraction instructions. For Relevance & Reason-
ableness, the score of high abstraction is significantly higher than 
medium abstraction instructions in all categories and higher than 
low abstraction instructions in Inspiration. From the answers of 
open-ended questions, they valued the balance between thematic 
coherence and interpretive freedom, accepting minor inconsisten-
cies when the overall atmosphere aligned with their vision (e.g., 
“extra content but the overall atmosphere was good”). In terms of 
Preference, this level was favored for enabling creative diversity, 
with even imperfect layouts often perceived as intentionally artis-
tic. This condition outperformed both other abstraction levels in 
Inspiration, generating outputs described as “exciting” and “fresh”, 
as the LLM’s broad interpretations often surprised and delighted 
users. 

5 Study 2 - User evaluation 
The goal of this study is to evaluate the effectiveness of display-
ing AI-generated interactive suggestions following users’ natural 
language instructions. We created a baseline condition to compare 
with EchoLadder for this purpose. The baseline is an automated VR 
scene modification approach based on the same backend pipeline of 
EchoLadder. It does not provide interactive suggestions, but directly 
modifies the scene following users’ verbal instruction. To keep the 
final generation quality consistent across conditions, we kept the 
“suggestions generation” module in the baseline backend although 
suggestions are not displayed users. 

The study aimed to address two core research questions: 
RQ1. How does EchoLadder compare with the baseline in terms 

of user satisfaction, workload and experience? 
RQ2. What creative strategies and workflows do participants 

adopt when using EchoLadder and the baseline, respectively? 

5.1 Design 
We designed a within-subjects experiment to compare EchoLadder 
and the baseline. 

5.1.1 Participants. We recruited 12 participants (6 female, 6 male) 
aged 23-29 (M=25.7, SD=1.65) through university mailing lists and 
local VR interest groups. Screening ensured all participants had lim-
ited professional 3D design experience (<1 year) but were familiar 
with VR interfaces (10/12 reported regular HMD use). This profile 
represented our target user base of non-expert designers who might 
benefit from AI assistance. Participants received $20 compensation 
for the approximately 2-hour session, including training, tasks, and 
interviews. 

5.1.2 Aparatus. The experiment used Unity 3D on Meta Quest 2 
headsets, with researchers observing via a tethered laptop connec-
tion. Sessions were video recorded with participant consent. 

5.1.3 Task. The same as Study 1, we developed three task types 
that reflected key design goal dimensions: functional, aesthetic and 
psychological stimulation. The study followed a structured protocol 
to ensure consistent data collection: 

• Functional Requirements: Designing a living room/bed-
room/study room with a XXX functional requirement. 

• Aesthetic Style: Designing a living room/bedroom/study 
room with a XXX aesthetic style. 

• Psychological Stimulus and Meaning: Designing a liv-
ing room/bedroom/study room with a XXX psychological 
stimulus and meaning. 

5.1.4 Procedure. To begin with, participants completed a train-
ing session by first watching a system introduction video covering 
EchoLadder and baseline interfaces as well as manual scene edit-
ing controls. They were briefed on the think-aloud protocols and 
study procedure. They were asked to perform training tasks that 
familiarized them with suggestion interaction and regeneration 
features. 

In the main session, each participant completed two tasks, each 
of a different type, using both EchoLadder and baseline in a coun-
terbalanced order. To reduce fatigue, participants were randomly 
assigned two out of the three available task types. This resulted in 
a total of four tasks per participant (2 types × 2 conditions). The 
tasks involved designing rooms with ≥ 10 objects, starting from an 
identical empty VR space. 

After each task, participants completed the NASA-TLX ques-
tionnaire [10] to measure perceived mental, physical, and temporal 
demands. Participants rated both conditions on 7-point Likert scales 
across four dimensions (preference, inspiration, control, implemen-
tation) and participated in a semi-structured interview about their 
experiences. 

5.1.5 Data Collection and Analysis. We employed a mixed-
method approach to capture both behavioral and subjective mea-
sures: 

Behavioral Data. System logs recorded timestamped interac-
tions including: voice commands, suggestion applications/regenerations, 
manual edits (additions, deletions, transformations), and undo oper-
ations. These were synchronized with think-aloud audio and screen 
recordings for contextual analysis. We summarized patterns in de-
sign and operation strategies by triangulating behavioral logs and 
think-aloud observation. 

Quantitative Measures. The post-task questionnaire assessed 
User Satisfaction using four 7-point Likert scales (1=low, 7=high) 
for user preference, inspiration, user control, and system execution. 
NASA-TLX scores measured cognitive load across six subscales 
(mental, physical, temporal demands; performance; effort; frustra-
tion). 

Interview data. Two researchers independently coded 25% of 
the interview transcripts using thematic analysis and achieved 
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agreement. Discrepancies were resolved through discussion to fi-
nalize the themes. 

5.2 Results 
In this section, we present both quantitative and qualitative findings. 
The quantitative analysis is based on questionnaire ratings, while 
the qualitative insights are derived from behavior logs, think-aloud 
sessions, and interview transcripts. The think-aloud and interview 
data were analyzed using thematic analysis. Two researchers first re-
viewed the data from two participants to establish an observational 
protocol and identify initial themes. Once consensus was reached, 
one researcher proceeded to analyze the full dataset. We organize 
our findings based on our research questions in the following. 

5.2.1 User Satisfaction, Experience and Workload (RQ1). 

User Satisfaction, Control and Engagement. Based on user 
subjective ratings (as shown in Figure 8), EchoLadder achieved 
significantly higher Inspiration scores than baseline (mean = 5.75 
vs. 4, p = 0.032), indicating stronger creativity support. Its average 
rating also outperformed the baseline on user preference, perceived 
user control and quality of suggestion execution. 

In the interviews, 7 out of 12 participants agreed that EchoLadder 
fostered a stronger sense of agency in decision-making and content 
modification due to the flexibility of accepting, rejecting, or adjust-
ing AI-generated suggestions. As P2 noted, EchoLadder felt “more 
reassuring” because it allowes “make independent decisions and mod-
ify every AI-proposed change”. Specifically, 6 participants appreci-
ated seeing the AI’s reasoning process through textual suggestions, 
which enhanced controllability through procedural visibility. As P9 
stated: “EchoLadder makes me feel like I’m a grading teacher and can 
see and interact with AI’s throught process.” Additionally, 7 partici-
pants valued the ability to apply, undo, or regenerate suggestions, 
granting them operational flexibility and modification authority 
at each stage. For instance, P11 mentioned: “Because suggestions 
can be undone and regenerated multiple times, I can try them one by 
one. If I don’t like them, I can just stop generating”. P8 added that 
most of the time LLMs fail to fully understand the intention so the 
option of selective generation allows them to “cut losses midway”. 
Overall, EchoLadder fosters stronger control and engagement and 
make user feel like “I am the master, and it is just a tool” (P9). 

Perceived Work Load and Manual Operations. In terms of 
perceived workload measured through NASA TLX (Figure 11), we 
ran a Wilcoxon signed-rank test due to a violation of normality. 
We found no statistical difference between EchoLadder and the 
baseline on any of the measures. Qualitative findings revealed some 
potential causes of mental and physical load. Regarding mental load, 
while many appreciated EchoLadder’s structured approach, some 
found it taxing: P1 compared it to “converting word problems into 
multiple-choice questions,” and others (P2, P3) experienced decision 
fatigue from evaluating numerous suggestions. P3, a non-designer, 
felt it was “more demanding” and preferred the baseline’s ready-
made results. However, the baseline’s “all-at-once” generation (P7, 
P9) often overwhelmed users when outputs missed their intent, 
sometimes discouraging iteration—as seen in P4’s passive “Just like 
it” acceptance. In terms of physical load, both conditions required 

Figure 8: Subjective ratings from participants for EchoLadder 
vs. Baseline. The error bar represents the standard deviation. 
Statistically significant effects are marked (∗ = p < 0.05). 

. 

Figure 9: Average percentage of manual operations using 
EchoLadder and baseline. Statistical significant effects are 
marked (∗∗ = p < 0.01). 

similar effort for fine-tuning, but the baseline demanded more cor-
rective actions, with users frequently deleting misplaced objects 
(P1, P6, P11). EchoLadder reduced “sunk effort” (P9) by allowing 
early rejection. 

To provide an additional perspective on workload, we computed 
the ratios of manual operations in each task from all participants’ 
interaction logs. We examined the normality of the data and tested 
for significance by t-test. As illustrated in Figure 9, the manual oper-
ation rate of EchoLadder (EchoLadder: 𝑚𝑒𝑎𝑛 = 0.6715, 𝑆𝐷 = 0.159, 
Baseline: 𝑚𝑒𝑎𝑛 = 0.7916, 𝑆𝐷 = 0.189, 𝑝 = 0.003) was significantly 
lower in Possible interpretations include EchoLadder saved more 
effort of trivial manual operations, and/or participants engaged 
more with hands-on crafting in the design process. 

Effects of Providing Suggestions in EchoLadder. As providing 
interactive suggestions is the core feature of our system’s interface 
innovation, we dived into analyzing how participants used it and 
understanding its effects. 

We first calculated the Suggestion Acceptance Rate from the sys-
tem log as the ratio of accepted suggestions (applied and not re-
tracted) to the total suggestions provided per task. The overall 
acceptance rate averaged 70.2% (SD = 0.196), with 7 of 12 partici-
pants exceeding the mean, though individual rates varied widely 
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Figure 10: Average suggestions acceptance rate of each par-
ticipant. 

(e.g., 90% for P7 vs. 23% for P5), as shown in Figure 10. This indicates 
that our system-generated suggestions are generally reasonable 
and well-used. Three main reasons for rejecting suggestions are 
identified from interviews: (1) Content mismatches, where proposals 
conflicted with design intent (e.g., P12 dismissing a dining table—“I 
don’t want this”, Style Task S1); (2) Poor execution of accepted sugges-
tions, later undone due to unsuitable colors (P2/P8) or implausible 
layouts (“This implementation is crazy”, P2); and (3) Redundancy, 
where users ignored excess suggestions after core needs were met 
(P12 stopping after four proposals: “Content is sufficient—I’ll adjust 
manually” ). 

Interview findings reflected three key benefits of the suggestion-
based approach: 

(1) Decision Support & Creativity Stimulation. Suggestions ef-
fectively scaffolded the design process by addressing both 
ideation bottlenecks and choice overload. For users strug-
gling with initial direction (e.g., P2’s uncertainty about color 
schemes or P12 “didn’t know what to do next” shown in Fig-
ure 12 Task 2), suggestions provided concrete starting points. 
Conversely, when overwhelmed by options, participants like 
P4 appreciated how suggestions helped “narrow thinking di-
rections”. The sequential nature of suggestions also fostered 
creative connections—P7’s experience typified this, where an 
initial sofa color suggestion naturally led to complementary 
furniture adjustments, creating design coherence. 

(2) Spatial Awareness & Control. Suggestions enhanced 3D scene 
manipulation through explicit spatial references. As P6 noted, 
directional cues helped users “accurately locate new ele-
ments” in the immersive environment. The modular work-
flow allowed incremental adjustments that participants found 
more manageable than holistic generation, e.g.,“Modifying 
elements one-by-one gives better control” (P7). However, this 
precision came at a cost: P7 and others reported “higher 
workload from individual adjustments”, indicating a trade-off 
between control and efficiency. 

(3) Design Intent Preservation. Unlike baseline’s monolithic gen-
eration, suggestions maintained stronger alignment with 
user intentions through stepwise refinement. When initial 

proposals missed the mark (e.g., P8’s Chinese lantern sug-
gestion), follow-up recommendations (e.g., matching book-
shelf ornaments) enabled course-correction while preserving 
the overall design vision. This iterative process reduced the 
“start-from-scratch” frustration observed in baseline’s work-
flows. 

EchoLadder’s Undo and Regenerate functions proved critical for 
managing AI-generated content, with the Undo feature used by 9 
out of 12 participants to efficiently correct mismatches between 
suggestions and design intent, such as removing unsuitable fur-
niture (P2) or reverting unwanted color changes (P5). Moreover, 
six participants also employed Undo as a diagnostic tool to detect 
scene changes outside their HMD’s field of view, which is a known 
issue in 3D virtual environments [9]. The Apply–Undo–Apply strat-
egy (e.g. Figure 12 P2 Task 1 & P12 Task 3) helped identify subtle 
modifications, addressing cases where changes were initially im-
perceptible or too minor to notice (P7,P8). This contrasted with the 
baseline, where P7 noted difficulty in tracking changes. 

5.2.2 Creative Strategies and Workflows in the Two Condi-
tions (RQ2). Our analysis revealed systematic differences in how 
participants approached scene design across the two conditions. 
These manifested in both design iteration activities and operational 
workflow patterns. Both conditions shared the same core design 
activities and showed slight differences in their iterative workflows 
and operational patterns. We also found similarities and differences 
in their creativity support, as reported below. 

Common Design Activities. Participants engaged in three fun-
damental design activities regardless of the condition. Global plan-
ning involved high-level conceptualization of space functions and 
aesthetics, as exemplified by P2’s comprehensive vision: “First, 
I established this should be a war-themed bedroom with military 
decor”. This typically preceded targeted modifications of specific 
aspects—P6’s focused adjustment (“Now make the walls camou-
flage green” ) being characteristic. Finally, all participants performed 
object-level manipulations, though with differing frequency; P8’s 
precise placement (“The TV needs 30cm clearance from the couch” ) 
typified this granular control. 

Slightly Different Iterative Workflows. Building upon these 
design activities, we identified three composite workflow strategies. 
The most common was top-down refinement, where participants 
like P4 progressed systematically from global concepts to specific 
implementations as shown in Figure 12 P4 Task 1: “I first defined a 
’relaxing lounge’ concept, then selected appropriate furniture styles, 
and finally adjusted individual pieces”. This contrasted with the 
focused execution approach favored by P6 and others, who transi-
tioned rapidly to object manipulation after minimal planning (“I 
knew it needed a TV, so I placed it first and built around it” ). 

Interestingly, the baseline enabled a unique cyclic refinement 
pattern absent in EchoLadder. As P9 described: “I kept oscillating 
between adding artworks and tweaking their arrangements—each 
adjustment inspired new ideas”. This back-and-forth process was 
observed in three participants, suggesting a more exploratory na-
ture of using the baseline to design, in contrast to a more top-down 
approach with EchoLadder. 
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Different Operational Patterns. The systems elicited different 
operation patterns. EchoLadder users predominantly adopted either 
sequential (n=8) or batch (n=4) processing. Sequential users like P7 
emphasized control: “Applying suggestions one-by-one lets me catch 
issues early”. Batch processors like P4 valued efficiency: “I execute 
everything first, then clean up—it’s faster overall”. The baseline, by 
contrast, enabled three distinct modes. The asynchronous approach 
was observed in participants (n=5) like P6 (Figure 12 Task 1) multi-
tasking during generation: “While the AI worked on walls, I placed 
furniture”. Others (n=7) preferred post-generation review, with P2 
(Figure 12 Task 2 & 3) noting: “I let the AI finish completely be-
fore making any edits”. In addition, two manual-centric participants 
manually established bases before AI involvement. P9’s explanation 
is: “I needed to ’anchor’ my vision first”. 

Creativity Support. Three types of creativity support emerged 
in both conditions. First, the system clarified vague ideas by ma-
terializing abstract concepts. Participants reported sudden clarity 
when seeing concrete suggestions, with P4 noting: “The sofa and 
bookshelf suggestions made me instantly visualize arrangements”. 
This effect was particularly strong for users with limited initial 
vision—P7, who struggled with sports-themed designs, found the 
treadmill suggestion pivotal, while P4 described how basic items 
like beds naturally prompted complementary additions (“A rug un-
derneath came to mind immediately” ). Second, AI proposals broad-
ened design considerations by surfacing overlooked elements. P6’s 
experience was typical: “The system reminded me about lighting and 
contrast—aspects I’d neglected”. This expansion occurred both for 
functional properties (visibility, spatial relationships) and aesthetic 
dimensions (color coordination, stylistic coherence). Third, users 
frequently adopted unexpectedly fitting suggestions that diverged 
from their initial plans. P6’s incorporation of a chandelier in a 
princess-themed room exemplified this: “I hadn’t considered how 
crystal lights would perfect the Barbie aesthetic”. Such discoveries of-
ten produced what P11 described as “a sudden spark of inspiration”. 

The two conditions also supported creativity differently in some 
aspects. EchoLadder’s textual suggestion lists provided conceptual 
starting points, while the baseline generation’s concrete visuals 
stimulated more immediate reactions. P9 articulated the difference 
between the two modes: “Text is abstract, but objects are tangible. 
With the baseline, I still need to mentally process what I see — but 
EchoLadder directly provides the thought process”. This might ex-
plain the higher rating on Inspiration in the survey result (Section 
5.5.1). However, this potential came with variability—P7 rejected an 
unwanted traditional Chinese style scene, but valued the regenerate 
option for managing unpredictability: “Quick regeneration makes 
the AI’s randomness feel controllable”. 

5.2.3 User-suggested Improvements. We collected the follow-
ing user suggestions during their think-aloud and interview an-
swers. 

Selective scene iteration. Currently, EchoLadder’s AI considers 
all objects in the scene when generating suggestions, which lacks 
the flexibility of allowing only specific objects to participate in iter-
ative AI suggestions or targeting individual objects for refinement. 
On one hand, participants emphasized the need to preserve man-
ually adjusted elements from further AI iterations. For instance, 

P1 stressed the importance of keeping “my completed operations 
unaffected” and having “the option to selectively include elements for 
AI modification”. Similarly, P1 and P7 expressed frustration when 
AI suggestions altered their manually optimized objects. On the 
other hand, P1 requested a “focus mode” for modifying individual 
objects without affecting others, noting: “I need the ability to change 
the style of a single object independently without influencing other 
objects”. 

Iterative prompt crafting. Participants expected the ability to 
refine prompts iteratively. P1 wanted to “iterate a prompt by modi-
fying the current one”, while P3 mentioned the need to “regenerate 
a single suggestion if the output is unexpected”. 

Multimodal prompts. P1 highlighted the need for multimodal 
prompts, stating: “I’d prefer prompts to include visual sketches along-
side text”. 

Beyond first-person perspective. Participants identified chal-
lenges in spatial orientation within virtual environments. P7 noted, 
“Operating on objects one by one in a first-person 3D space is fatigu-
ing”, while P5 remarked: “I struggle to gauge the scale of the entire 
scene and would greatly benefit from a god’s-eye view to navigate 
and inspect the space from above”. These insights suggest a need 
for improved scene visualization tools to support navigation and 
decision-making. 

6 Discussion 

6.1 Summary of findings 
Our evaluation of EchoLadder demonstrates its effectiveness in 
enabling progressive, user-guided VR scene design through AI-
generated interactive suggestions. The ablation study confirmed 
the necessity of integrating visual input, object parameters, and AI 
suggestions (V+OP+S) to achieve optimal scene generation qual-
ity. This configuration outperformed ablated variants in relevance, 
reasonableness, and inspiration, particularly for high-abstraction in-
structions, where the system performed well at translating abstract 
concepts into coherent spatial designs. 

The user study revealed that EchoLadder significantly enhanced 
user creativity and inspiration compared to the baseline genera-
tion, with participants leveraging suggestions to iteratively refine 
their designs while retaining agency. By providing textual sugges-
tions, EchoLadder offers figurative hints that trigger spatial associ-
ations and conceptual thinking, introducing unexpected inspiring 
elements. Key interaction features—undo, regenerate, and selec-
tive application of suggestions—empowered users to experiment 
without fear of irreversible errors, fostering a sense of agency and 
engagement absent in baseline’s workflows. By selecting, reading, 
and experimenting with suggestions, users gain a more active and 
deliberate role in shaping the scene. 

6.2 Comparison with Prior Work 
EchoLadder advances the field of AI-assisted spatial design by ad-
dressing a critical gap in existing systems: the lack of intermediate 
user intervention during scene generation. Unlike end-to-end ap-
proaches like HOLODECK or VRCopilot [32], which limit user in-
put to initial prompts or post-generation adjustments, EchoLadder 
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externalizes the AI’s reasoning process through actionable sugges-
tions. This aligns with emerging HCI paradigms that emphasize 
progressive co-creation outside the spatial design scenarios [5, 27], 
where users iteratively steer AI outputs rather than passively accept-
ing results. Our findings echo prior work on AI-supported writing 
tools [27], where intermediate suggestions stimulate ideation, but 
extend these principles to 3D spatial design by integrating multi-
modal reasoning and immersive interaction. 

6.3 Design Implications 
Intermediate Suggestions Enhance Creativity. Exposing AI-

generated suggestions as modular, interactable components helps 
users bridge the gap between abstract ideas and concrete imple-
mentations. This approach not only mitigates the “blank canvas” 
problem but also introduces serendipitous elements that spark new 
ideas. 

Flexible Control Mechanisms. Features like undo and regener-
ate reduce the cognitive cost of experimentation of ideas, enabling 
users to explore divergent design paths without friction. Future 
systems should prioritize such reversible interactions to balance au-
tomation with user agency. More exploration of design approaches 
facilitating quasi-execution could also be promising. 

Abstraction-Aware AI Pipelines. EchoLadder’s strong perfor-
mance on high-abstraction instructions suggests that generative 
AI models are more suitable for supporting tasks with relatively 
abstract goals. Vague prompts could trigger broader exploratory 
suggestions, while concrete requests might prioritize precision. 
While aligning mental models is hard for human-AI collaboration, 
involving users in the decision making process can facilitate idea 
buy-in and co-creation. Perhaps for tasks in medium abstraction 
levels, AI systems could shift the discussion with users between 
abstraction levels for intent alignment. 

6.4 Limitations and Future Work 
While EchoLadder demonstrates promise, our studies highlighted 
areas for improvement. First is a potentially high cognitive load. 
Participants occasionally experienced decision fatigue when eval-
uating multiple suggestions. Future iterations could incorporate 
user intent modeling to prioritize or filter suggestions dynamically. 
Secondly, users desired finer control over which scene elements 
are modified by the AI (e.g., protecting manually adjusted objects). 
Implementing “focus modes” or exclusion zones could address this. 
In addition, participants also suggested integrating sketches or spa-
tial gestures alongside voice commands to enrich expressiveness. 
These are all promising features to add in future systems. Moreover, 
there are other meaningful comparisons to evaluate our proposed 
system. For instance, comparing it with a similar system like LLM 
[6], which shares conceptual similarities but differs in technical 
components, could help assess different implementation choices. 

7 Conclusion 
This work designed, implemented and tested a novel system that 
enables progressive spatial design within the immersive VR environ-
ment. It differs from existing approaches by focusing on supporting 
iteration through AI-assisted modification rather than zero to one 

generation, which is achieved by enabling users to read and interact 
with the intermediate suggestions of AI automation. Our techni-
cal evaluation showed benefits of each of our pipeline component, 
while our user evaluation revealed benefits of providing this inter-
mediate layer of interaction, including its better creativity support 
and user control. Our study also found that showing suggestions af-
fected users’ creative strategy by leaning more towards a top-down 
approach with global planning, while a baseline approach appeared 
more exploratory. Our findings underscore the value of progressive 
design workflows in immersive environments and provide a foun-
dation for future systems that blend automation with embodied 
user agency. 
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A Appendix 

A.1 Details of Labeling Module 
Prompt: 
System Prompt: Assume you’re assisting users in automating 
picture labeling, You will receive a base64 code of a image. Based 
on all this data, generate the information of data as JSON format. 
The format should like: 
{ 
"name":"object_name", 
"description":"object_description", 
"category":"object_category" 
}. 
Here, I will offer you the object_name, you should use it to 
generate the JSON. Description should only include the function, 
color, material, aesthetics and psychology of this object in the 
image, please use at most three simple sentences to finish the 
description, try to keep description very concise. Category is 
the category in reality of the object in the image. Categories 
such as "3D model", "3D shape" and so on are not be allowed. 
Do not generate extra string or information when you generate 
JSON. 
User Prompt: object_name: Armchair1_C1 
image: the base64 code of model image. 

JSON Format Object Annotation: 
{ 
"name": "Armchair1_C1", 
"description": "This is a contemporary style armchair with a 
sleek black color finish, likely made of a material such as leather 
or synthetic upholstery. Its design is intended for comfortable 
seating with a modern aesthetic, potentially contributing to a 
sophisticated and minimalistic ambiance in a living space.", 
"category": "Chair" 
} 

A.2 Details of Generative Module 
Scene Understanding: 
System Prompt: I will give you a list of objects in json format, 
includes the names, coordinate points, rotation vectors, sizes 
of the objects, and hexadecimal color codes of objects in the 
3D scene, also I will provide you the top view picture of the 
3D scene, please understand this scene, please understand this 
scene. 
User Prompt: Object list: JSON format objects’ parameters. 
Top View Image: the base64 code of top view image of scene. 

Suggestions Generation: 
System Prompt: As a VR scene designer, you are presented 
with a detailed information of a 3D space scene. Your task is to 
interpret abstract user instructions for modifying this VR scene. 
Based on the scene’s current layout, objects’ attributes, and user 
commands, propose several creative and feasible suggestions 
for adjustments. These suggestions may involve repositioning 
furniture, altering object colors, adjusting sizes, or introducing 

new elements to enhance the space’s functionality and aesthetic 
appeal. Ensure your proposals are clear, specific, and aligned 
with the user’s desires, providing a blend of practicality and 
innovative design. Please provide modification suggestions and 
solutions with JSON format. For example, if you provide some 
suggestions, the result is: 
{ 
"suggestions":[ 
{ 
"suggestion":"add something and move something, change 
color" 
}, 
{ 
"suggestion":"add something and change color, also, change 
style" 
}, 
{ 
"suggestion":"change color, destroy something" 
}, 
.... 
{ 
"suggestion":"move something, rotate something" 
}] 
} 
Each suggestions item can only include the suggestion, DO 
NOT include any other characters. Avoid extraneous text or 
characters outside the specified JSON format. The return format 
only includes JSON content, start with the first { of json. 
User Prompt: User Instruction : User Instruction 
Object list: JSON format objects’ parameters. 
Top View Image: the base64 code of top view image of scene. 

Suggestions JSON format: 
{ 
"suggestions":[ 
{ 
"suggestion":"add a large screen on Wall_N for a cinema effect 
and install surround sound speakers around the room" 
}, 
{ 
"suggestion":"change the wall color to dark gray or black for an 
immersive cinema feel" 
}, 
{ 
"suggestion":"rearrange the room by adding comfortable re-
cliner chairs in front of the screen" 
}, 
.... 
{ 
"suggestion":"adjust the ceiling height to accommodate a pro-
jector or large screen installation" 
}] 
} 
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Actions Generation: 
System Prompt: Translate design suggestions into specific 
VR 3D space modifications based on JSON scene parameters. 
Output must strictly adhere to the JSON format below, detailing 
implementation steps for Add, Move, Rotate, Scale, Color, Style, 
and Destroy actions. You must remember DO NOT include other 
redundant text in the generated content, the return format only 
includes JSON content, start with the first "{" of JSON: 
{ 
"steps": [{ 
"action": "Specify_Action_Name", 
"action_command": "Action_Name {Object_Name} to [Modifica-
tion_Value]", 
"selected_obj": "Object_Name", 
"key": "Modification_Value" 
}, 
... 
{ 
"action": "Specify_Action_Name", 
"action_command": "Action_Name {Object_Name} to [Modifica-
tion_Value]", 
"selected_obj": "Object_Name", 
"key": "Modification_Value" 
}] 
} 
Notes: For Add Command: Set ’action_name’ to "Add", use the 
format "Add {Object} to [(Position)]", and provide "key" with Vec-
tor3 position in (0,0,0) format as "Modification_Value". For Move 
Command: Use "Move {Object_Name} to [(New_Position)]" for-
mat. For Rotate Command: Use "Rotate {Object} [(Angle)]" for-
mat, specifying Vector3 angle in (0,0,0) format in "key". Make 
sure the back of objects facing the nearest wall. For Scale Com-
mand: Use "Scale {TV} [1.2] times", should specify scaling extent 
as an integer in "key". For Color Command: Use "Color {Table} 
to red[(255, 0, 0)]", color require RGB Vector3 in (0,0,0) for-
mat for Modification_Value. For Style Command, Use "Change 
{Table} to [Wood]", "key" is the material type as a string, includ-
ing Basket, Black_Plastic, Brick, Bronze_Metal, Copper_metal, 
Dark_Oak, Flow_Water, Flower_Pattern, Glass, Glass_Dark, 
Golden_metal_material, Grass, Leaf_Pattern, Leather, Marble, 
Rustic_Wood, Shiny_Metal. For Destroy Command: "Destroy 
{Cup}", need "selected_obj", action command and key. If the ob-
ject you want to manipulate does not exist in the scene, you 
will need to "Add" this object before you manipulate it. Do not 
forget {} and () Avoid extraneous text or characters outside the 
specified JSON format, the return format only includes json 
content, start with the first "{" of JSON" 
User Prompt: Suggestion : Suggestion 
Object list: JSON format objects’ parameters. 
Top View Image: the base64 code of top view image of scene. 

Actions JSON format: 
{ 
"steps": [ 
{ 

"action": "Add", 
"action_command": "Add Movie_Poster to [(-3.80, 1.00, 0.05)]", 
"selected_obj": "Movie_Poster", 
"key": "(-3.80, 1.00, 0.05)" 
}, 
... 
{ 
"action": "Move", 
"action_command": "Move Movie_Poster to [(-1.00, 1.00, -3.95)]", 
"selected_obj": "Movie_Poster", 
"key": "(-1.00, 1.00, -3.95)" 
}] 
} 

For "Add" action, EchoLadder sends LLM the object name and 
categories list from our 3D model asset. LLM selects appropriate 
category and description for the object to be added based on context. 
EchoLadder searches for the object that best matches the description 
generated by the LLM among the responding category and adds it 
to the scene. The specific prompt is as follows: 

System Prompt: 
I will offer you a name of object, a list of categories, you should 
provide me with the perfect category that best fit the object 
and the description about the object, description should include 
the function, material, aesthetics and psychology of this object, 
please use at most three simple sentences to finish the descrip-
tion, try to keep description very concise.you give me categories 
you chosen and description as this JSON format: 
{ 
"Category1":"Category1", 
"Description":"description" 
} 
User Prompt: 
The object is : object_name. 
Categories include: category_list. 

A.3 Statistical Data of Ablation Study 

Category 
Friedman Test 

W df p 𝜒 2 (3) 
Relevance 0.315 3 <0.001 148.53 
Preference 0.295 3 <0.001 138.96 

Reasonableness 0.128 3 <0.001 60.38 
Inspiration 0.242 3 <0.001 113.91 

Table 3: Friedman Test of scene modification with different 
components conditions. 
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Relevance Preference Reasonableness Inspiration 
EchoLadder - V+OP+S 𝑚𝑒𝑎𝑛 = 4.18, 𝑆𝐷 = 0.966 𝑚𝑒𝑎𝑛 = 3.86, 𝑆𝐷 = 1.100 𝑚𝑒𝑎𝑛 = 3.59, 𝑆𝐷 = 1.214 𝑚𝑒𝑎𝑛 = 3.80, 𝑆𝐷 = 1.185 

OP+S 𝑚𝑒𝑎𝑛 = 3.37, 𝑆𝐷 = 1.402 𝑚𝑒𝑎𝑛 = 3.01, 𝑆𝐷 = 1.394 𝑚𝑒𝑎𝑛 = 2.99, 𝑆𝐷 = 1.441 𝑚𝑒𝑎𝑛 = 2.99, 𝑆𝐷 = 1.441 
V+OP 𝑚𝑒𝑎𝑛 = 3.24, 𝑆𝐷 = 1.237 𝑚𝑒𝑎𝑛 = 2.89, 𝑆𝐷 = 1.240 𝑚𝑒𝑎𝑛 = 2.76, 𝑆𝐷 = 1.361 𝑚𝑒𝑎𝑛 = 2.76, 𝑆𝐷 = 1.361 
V+S 𝑚𝑒𝑎𝑛 = 2.40, 𝑆𝐷 = 1.192 𝑚𝑒𝑎𝑛 = 2.21, 𝑆𝐷 = 1.155 𝑚𝑒𝑎𝑛 = 2.39, 𝑆𝐷 = 1.433 𝑚𝑒𝑎𝑛 = 2.35, 𝑆𝐷 = 1.187 

Table 4: The mean score and 𝑆𝐷 of each Input Configuration in different categories. 

Relevance Preference Reasonableness Inspiration 
Low 𝑚𝑒𝑎𝑛 = 4.32, 𝑆𝐷 = 1.08 𝑚𝑒𝑎𝑛 = 3.94, 𝑆𝐷 = 1.17 𝑚𝑒𝑎𝑛 = 3.92, 𝑆𝐷 = 1.23 𝑚𝑒𝑎𝑛 = 3.40, 𝑆𝐷 = 1.36 

Medium 𝑚𝑒𝑎𝑛 = 3.86, 𝑆𝐷 = 0.97 𝑚𝑒𝑎𝑛 = 3.52, 𝑆𝐷 = 1.16 𝑚𝑒𝑎𝑛 = 3.12, 𝑆𝐷 = 1.08 𝑚𝑒𝑎𝑛 = 3.68, 𝑆𝐷 = 1.11 
High 𝑚𝑒𝑎𝑛 = 4.34, 𝑆𝐷 = 0.85 𝑚𝑒𝑎𝑛 = 4.12, 𝑆𝐷 = 0.96 𝑚𝑒𝑎𝑛 = 3.60, 𝑆𝐷 = 1.23 𝑚𝑒𝑎𝑛 = 4.32, 𝑆𝐷 = 0.82 

Table 5: The mean score and 𝑆𝐷 of different abstraction levels in different categories, in this table Low, Medium, and High are 
Low Abstraction, Medium Abstraction and High Abstraction. 

Category Abstraction Level Friedman Test 
W df p 𝜒 2 (2) 

Relevance L×M×H 0.099 2 0.007 9.94 
Preference L×M×H 0.094 2 0.009 9.373 

Reasonableness L×M×H 0.109 2 0.004 10.88 
Inspiration L×M×H 0.165 2 <0.001 16.513 

Category Abstraction Level Wilcoxon signed-rank tests 
W Z p r 

Relevance 
L×M 180 2.800 0.015 0.396 
L×H 175 -0.026 1.0 0.004 
M×H 145 -2.568 0.031 0.363 

Preference 
L×M 217 2.103 0.106 0.297 
L×H 241 -0.724 0.468 0.102 
M×H 165 -2.702 0.021 0.382 

Reasonableness 
L×M 165 3.362 0.002 0.475 
L×H 297 1.327 0.554 0.188 
M×H 265 1.994 0.046 0.282 

Inspiration 
L×M 319 -1.100 0.814 0.177 
L×H 120 -3.550 <0.001 0.545 
M×H 107 2.450 0.043 0.453 

Table 6: Statistical data of scene modification with different abstraction levels. In this table, L, M, H are Low, Medium, and High 
Abstraction. 

Figure 11: NASA TLX results for EchoLadder and baseline (Full score is 21). 
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Figure 12: Example participants’ workflows (P2, P4, P6, P12). 
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